2.3 Классификация драйверов
В отличие от пользовательского приложения, драйвер не является процессом и не имеет потока исполнения. Вместо этого управление драйверу передаётся в результате запроса на ввод/вывод от пользовательского приложения или драйвера, либо возникает в результате прерывания. В первом случае контекст исполнения драйвера точно известен - это прикладная программа. Во втором случае контекст исполнения может быть как известным, так и случайным - это зависит от контекста исполнения функции вызывающего драйвера. В третьем случае контекст исполнения случайный, поскольку прерывание (и, соответственно, исполнение кода драйвера) может произойти при выполнении любой прикладной программы.
По расположению в стеке драйверов:
Драйверы высшего уровня — получают запросы от пользовательского приложения и взаимодействуют с нижестоящими драйверами;
Промежуточные драйверы — получают запросы от вышестоящих драйверов и взаимодействуют с нижестоящими драйверами;
Драйверы низшего уровня — получают запросы от вышестоящих драйверов, осуществляют конечную обработку пакетов запросов.
Также выделяют понятие монолитного драйвера – драйвера высшего уровня, не взаимодействующего ни с какими другими драйверами.
В связи с усовершенствованием модели драйверов Windows (WDM – Windows Driver Model), в которой были добавлены поддержка Plug and Play и энергосберегающие технологии, драйвера стали разделять на:
Унаследованные драйвера (Legacy-драйвера, драйвера «в стиле NT») — драйвера, написанные в старом манере, без поддержки нововведений;
WDM-драйвера – драйвера, которые удовлетворяют всем требованиям расширенной модели WDM.
2.4 Общая структура Legacy-драйвера
Legacy-драйвер имеет следующие основные точки входа:
DriverEntry – процедура загрузки драйвера;
DriverUnload – процедура выгрузки драйвера;
Рабочие процедуры обработки IRP-пакетов;
ISR-процедура (Interrupt Service Routine) – процедура обработки прерывания;
DPC-процедура (Deferred Procedure Call) – процедура отложенного вызова.
2.4.1 Процедура DriverEntry
Данная процедура присутствует в любом драйвере и вызывается диспетчером ввода/вывода при загрузке драйвера.
Legacy-драйверы выполняют в ней существенно большую работу, нежели WDM-драйвера, так как они вынуждены выполнять работу процедуры AddDevice, обязательной для WDM-драйверов. Помимо решения инициализационных задач и регистрации точек входа рабочих процедур обработки поддерживаемых IRP-пакетов и процедуры выгрузки драйвера, здесь:
Определяется аппаратное обеспечение, которое драйвер будет контролировать;
Создаются объекты устройств (функция IoCreateDevice) для каждого физического или логического устройства под управлением данного драйвера;
Для устройств, которые должны быть видимы пользовательским приложениям, создаются символьные ссылки (функция IoCreateSymbolicLink);
При необходимости, устройство подключается к объекту прерываний. В случае, если ISR-процедура требует использования DPC-процедуры, то соответсвующий ей объект создаётся и инициализируется на этом этапе;
Выделение памяти, необходимой для работы драйвера.
2.4.2 Процедура DriverUnload
Диспетчер ввода/вывода вызывает данну процедуру при динамической выгрузке драйвера. Эта процедура выполняет действия, «обратные» тем, что выполняются в процедуре DriverEntry.
Для Legacy-драйверов характерны следующие шаги:
Для некоторых типов аппаратуры необходимо сохранить ее состояние в системном реестре, т.к. при последующей загрузке драйвера эти данные могут быть использованы;
Если прерывания разрешены для обслуживаемого устройства, то процедура выгружки должна запретить их и произвести отключение от объекта прерываний. Ситуация, когда устройство будет порождать прерывания для несуществующего объекта прерывания, неминуемо приведет к краху системы;
Удаление символьной ссылки из пространства имен, видимого пользовательскими приложениями (IoDeleteSymbolicLink);
Удаление объекта устройства (IoDeleteDevice);
Освобждение памяти, выделенной драйверу в процессе работы.
2.4.3 Рабочие процедуры обработки IRP-пакетов
Все функции, зарегистрированные в процедуре DriverEntry путём заполнения массива MajorFunction, вызываются Диспетчером ввода/вывода для обработки соответсвующих запросов от клиентов драйвера. Эти запросы всегда оформлены в виде специальных структур данных – IRP-пакетов, память под которые выделяется Диспетчером ввода/вывода в нестраничном системном пуле. Структура IRP-пакета такова, что он состоит из заголовка фиксированного размера и IRP-стека, размер которого зависит от количества объектов устройств в стеке.
2.4.3.1 Заголовок IRP пакета. Структура заголовка IRP-пакета имеет следующие поля:
Поле IoStatus типа IO_STATUS_BLOCK содержит два подполя:
Status содержит значение, которое устанавливает драйвер после обработки пакета;
В Information чаще всего помещается число переданных или полученных байт.
Поле AssociatedIrp.SystemBuffer типа PVOID содержит указатель на системный буфер для случая, если устройство поддерживает буферизованный ввод/вывод;
Поле MdlAddress типа PMDL содержит указатель на MDL-список, если устройство поддерживает прямой ввод вывод;
Поле UserBuffer типа PVOID содержит адрес пользовательского буфера для ввода/вывода;
Поле Cancel типа BOOLEAN - это индикатор того, что пакет IRP должен быть аннулирован.
2.4.3.2 Стек IRP-пакета. Основное назначение ячеек стека IRP-пакета состоит в том, чтобы хранить функциональный код и параметры запроса на ввод/вывод. Для запроса, который адресован драйверу самого нижнего уровня, соответствующий IRP пакет имеет только одну ячейку стека. Для запроса, который послан драйверу верхнего уровня, Диспетчер ввода/вывода создает пакет IRP с несколькими стековыми ячейками – по одной для каждого объекта устройства.
Каждая ячейка IRP-стека содержит:
MajorFunction типа UCHAR – это код, описывающий назначение операции;
MinorFunction типа UCHAR – это код, описывающий суб-код операции;
DeviceObject типа PDEVICE_OBJECT – это указатель на объект устройства, которому был адресован данный запрос IRP;
FileObject типа PFILE_OBJECT – файловый объект для данного запроса;
Parameters типа union – применение зависит от значения MajorFunction.
Диспетчер ввода/вывода использует поле MajorFunction для того, чтобы извлечь из массива MajorFunction нужную для обработки запроса процедуру.
Каждая процедура обработки IRP пакетов должна в качестве параметров принимать:
Указатель на объект устройства, для которого предназначен IRP запрос;
Указатель на пакет IRP, описывающий этот запрос;
2.4.3.3 Функция обработки пакетов IRP_MJ_CREATE. Данная функция предназначена для обработки запросов на получение дескриптора драйвера от пользовательских приложений или вышестоящих драйверов. Как правило, эта функция просто помечает IRP-пакет, как завершённый.
2.4.3.4 Функция обработки пакетов IRP_MJ_CLOSE. Данная функция предназначена для обработки запросов на закрытие дескриптора драйвера от пользовательских приложений или вышестоящих драйверов. Как правило, эта функция просто помечает IRP-пакет, как завершённый.
2.4.3.5 Функция обработки пакетов IRP_MJ_DEVICE_CONTROL. Данная функция позволяет обрабатывать расширенные запросы от клиентов пользовательского режима, служат чаще всего для обмена данными между приложением и драйвером. Такой запрос может быть сформирован посредством вызова функции DeviceIoControl из пользовательского режима.
Здесь используются IOCTL-коды (I/O Control code), часть из которых предопределена операционной системой, а часть может создаваться разработчиком драйвера. Такой код задаётся в запросе Диспетчером ввода/вывода при формировании IRP-пакета.
Операции драйвера, которые работают с IOCTL-запросами, часто требуют задания буферной области для размещения входных или выходных данных. Возможна такая ситуация, когда в одном запросе используются оба буффера.
Метод доступа к данным, обеспечиваемый Диспетчером ввода/вывода, определяется в IOCTL-коде. Такими методами могут быть:
METHOD_BUFFERED: входной пользовательский буфер копируется в системный, а по окончании обработки системный копируется в выходной пользовательский буфер.
METHOD_IN_DIRECT: необходимые страницы пользовательского буфера загружаются с диска в оперативную память и блокируются. Далее с помощью DMA осуществляется передача данных между устройством и пользователем.
METHOD_OUT_DIRECT: необходимые страницы пользовательского буфера загружаются с диска в оперативную память и блокируются. Далее с помощью DMA осуществляется передача данных между устройством и пользователем.
METHOD_NEITHER: при данном методе передачи не производится проверка доступности памяти, не выделяются промежуточные буфера и не создаются MDL. В IRP-пакете передаются виртуальные адреса буферов в адресном пространстве инициатора запроса ввода/вывода.
В данном случае флаги, определяющие тип буферизации в объекте устройства, не имеют значения при работе с IOCTL запросами. Механизм буферизованного обмена определяется при каждом задании значения IOCTL в специально предназначенном для этого фрагменте этой структуры данных. Данный подход обеспечивает максимальную гибкость при работе с вызовом пользовательского режима DeviceIoControl.
С точки зрения драйвера, доступ к буферным областям, содержащим данные или предназначенным для данных, осуществляется с помощью следующих полей структур [1]:
METHOD_BUFFERED | METHOD_IN_DIRECT или METHOD_OUT_DIRECT | METHOD_NEITHER | |
Input Буфер с данными | Использует буферизацию (системный буфер) Адрес буфера в системном адресном пространстве указан в pIrp->AssociatedIrp.SystemBuffer | Клиентский виртуальный адрес в Parameters. DeviceIoControl. Type3InputBuffer | |
Длина указана в Parameters.DeviceIoControl.InputBufferLength | |||
Output Буфер для данных | Использует буферизацию (системный буфер) Адрес буфера в системном адресном пространстве указан в pIrp-> AssociatedIrp. SystemBuffer | Использует прямой доступ, клиентский буфер преобразован в MDL список, указатель на который размещен в pIrp->MdlAddress | Клиентский виртуальный адрес в pIrp->UserBuffer |
Длина указана в Parameters.DeviceIoControl.OutputBufferLength |
2.4.4 ISR – процедура обработки прерываний
Эту функцию драйвер регистрирует, чтобы она получала управление в момент, когда аппаратура, обслуживаемая драйвером, передала сигнал прерывания. Задача этой функции выполнить минимальную работу и зарегистрировать процедуру отложенного вызова (DPC) для обслуживания прерывания. Вызов диспетчером прерываний ядра может произойти в любом контексте: как ядра, так и пользовательского процесса.
2.4.5 DPC – процедура отложенного вызова
Такие процедуры выполняются при более низком уровне запроса прерывания (IRQL), чем ISR, что позволяет не блокировать другие прерывания. В них может выполняться вся или завершаться начатая в ISR работа по обслуживанию прерываний.
3. Конструкторский раздел
Так выглядит схема взаимодействия пользовательского приложения с драйвером через компоненты системы:
3.1 Legacy-драйвер
В Legacy-драйвере данного курсового проекта реализованы следующие процедуры:
DriverEntry;
DriverUnload;
DispatchCreate (обработка IRP_MJ_CREATE-пакета);
DispatchClose (обработка IRP_MJ_CLOSE-пакета);
DispatchDeviceControl (обработка IRP_MJ_DEVICE_CONTROL-пакета).
... 100;i++)recursive(); //Вызываем 100 раз рекурсивную функцию 100х100 return 0; } Приложение простое по сути, но очень содержательное, так как эффективно демонстрирует основные возможности Quantify. В самом начале статьи мы выдвигали требование, по которому разработчикам не рекомендуется пользоваться рекурсивными функциями. Тестеры или разработчики, увидев диаграмму вызовов, выделят функцию, ...
... из которых ранее относились только к интеллектуальным возможностям человека. 2. Инструментальное программное обеспечение 2.1 Сущность и понятие инструментального программного обеспечения Инструментальное программное обеспечение (ИПО) — программное обеспечение, предназначенное для использования в ходе проектирования, разработки и сопровождения программ. Применяется инструментальное ...
... системам линейных алгебраических уравнений с более чем одной неизвестной; MATLAB решает такие уравнения без вычисле-ния обратной матрицы. Хотя это и не является стандартным математическим обозначением, система MATLAB использует терминологию, связанную с обычным делением в одномерном случае, для описания общего случая решения совместной системы нескольких линейных уравнений. Два символа деления / ...
... . Время задержки сигнала при этом увеличивается до 9нс. Наиболее перспективным семейством КМОП микросхем считается семейство SN74AUC с временем задержки сигнала 1,9нс и диапазоном питания 0,8..2,7В. 3. ИНФОРМАЦИОННО-СПРАВОЧНАЯ СИСТЕМА 3.1 Определение и классификация БД База данных – это информационная модель предметной области, совокупность взаимосвязанных, хранящихся вместе данных при ...
0 комментариев