2.2 Структура экспертной системы
На рисунке 2.1 изображена обобщенная структура экспертной системы.
Рисунок 2.1 – Типовая структура экспертной системы
Следует учесть, что реальные ЭС могут иметь более сложную структуру, однако блоки, изображенные на рисунке, непременно присутствуют в любой действительно экспертной системе, поскольку представляют собой стандарт структуры современной ЭС.
Экспертные системы имеют две категории пользователей и два отдельных "входа", соответствующих различным целям взаимодействия пользователей с ЭС:
- обычный пользователь, которому требуется консультация ЭС - диалоговый сеанс работы с ней, в процессе которой она решает некоторую экспертную задачу.
- экспертная группа инженерии знаний, состоящая из экспертов в предметной области и инженеров знаний. В функции этой группы входит заполнение базы знаний, осуществляемое с помощью специализированной диалоговой компоненты ЭС - подсистемы приобретения знаний, которая позволяет частично автоматизировать этот процесс.
База знаний предназначена для хранения экспертных знаний о предметной области, используемых при решении задач экспертной системой.
База данных предназначена для временного хранения фактов или гипотез, являющихся промежуточными решениями или результатом общения системы с внешней средой, в качестве которой обычно выступает человек, ведущий диалог с экспертной системой.
Механизм логического вывода – механизм рассуждений, оперирующий знаниями и данными с целью получения новых данных из знаний и других данных, имеющихся в базе данных. Для этого обычно используется программно реализованный механизм дедуктивного логического вывода (какая-либо его разновидность).
Интерфейс пользователя служит для ведения диалога с пользователем, в ходе которого ЭС запрашивает у пользователя необходимые факты для процесса рассуждения, а также, дающая возможность пользователю в какой-то степени контролировать и корректировать ход рассуждений экспертной системы.
Подсистема объяснений необходима для того, чтобы дать возможность пользователю контролировать ход рассуждений и, может быть, учиться у экспертной системы.
Подсистема приобретения знаний служит для корректировки и пополнения базы знаний. В простейшем случае это – интеллектуальный редактор базы знаний, в более сложных экспертных системах – средства для извлечения знаний из баз данных, неструктурированного текста, графической информации и т.д.
2.3 Классификация экспертных систем
Для классификации ЭС используют следующие признаки:
способ формирования решения;
способ учета временного признака;
вид используемых данных;
число используемых источников решения знаний.
По способу формирования решения ЭС можно разделить на анализирующие и синтезирующие. В системах первого типа осуществляется выбор решения из множества известных решений на основе анализа знаний, в системах второго типа решение синтезируется из отдельных фрагментов знаний.
В зависимости от способа учета временного признака ЭС делят на статические и динамические. Статические ЭС предназначены для решения задач с неизменяемыми в процессе решения данными и знаниями, а динамические ЭС допускают такие изменения.
По видам используемых данных и знаний различают ЭС с детерминированными и неопределенными знаниями. Под неопределенностью знаний и данных понимаются их неполнота, ненадежность, нечеткость.
ЭС могут создаваться с использованием одного или нескольких источников знаний.
Экспертные системы делятся на различные виды в зависимости от решаемых задач. Задачи, которые решают экспертные системы:
Интерпретация – описание ситуации по информации, поступающей от датчиков и других источников.
Наблюдение – сравнение результатов интерпретации с ожидаемыми результатами.
Мониторинг – наблюдение в определенные промежутки времени.
Прогноз – это определение вероятных последствий заданных ситуацией, системы прогнозирования основываются на имитационном моделировании, которое отражает связи в реальный мир.
Диагностика – выявление причин неправильного функционирования системы по результатам наблюдения.
Ремонт – выполнение последовательности предписанных исправлений.
Планирование – построение последовательности действий для достижения желаемого результата.
Проектирование – построение конфигурации объектов с учетом ограничений.
Отладка – составление рецептов исправления неправильного функционирования системы, настройка отладочной системы.
Управление – адаптивное руководство поведения системы в целом (наблюдает, чтобы отследить на протяжении времени, классифицирует, диагностирует это отклонение, находит рецепт его устранения и осуществляет его применение).
Обучение – диагностирование, отладка, ремонт поведения обучаемого.
2.4 Характеристики экспертных систем
Экспертные системы можно характеризовать следующими особенностями:
• область применения,
• класс решаемых задач,
• метод (методы) представления знаний,
• метод (методы) решения задач (поиска решений),
• структуризация данных (фактов) предметной области,
• структуризация/неструктуризация знаний о решении задач,
• четкость/нечеткость данных,
• четкость/нечеткость знаний,
• монотонность/немонотонность процесса решения задач,
• метод (методы) приобретения (пополнения) знаний,
• вид пользовательского интерфейса,
• динамическая или статическая предметная область,
• интеграция с другими программными системами (СУБД, системами моделирования, графическими пакетами и т.д.).
2.5 Этапы создания экспертных систем
1 этап – Идентификация.
1. Определение участников и их ролей в процессе создания и эксплуатации экспертной системы.
В процессе создания экспертной системы могут участвовать следующие специалисты: инженеры по знаниям, эксперты, программисты, руководитель проекта, заказчики (конечные пользователи). При реализации сравнительно простых экспертных систем программистов может не быть. Роль инженера по знаниям – выуживание профессиональных знаний из экспертов и проектирование базы знаний экспертной системы и ее архитектуры. Программист необходим при разработке специализированного для данной экспертной системы программного обеспечения, когда подходящего стандартного (например, оболочки для создания экспертных систем) не существует или его возможностей не достаточно и требуются дополнительные модули.
В процессе эксплуатации могут принимать участие конечные пользователи, эксперты, администратор.
... И ТЕСТИРОВАНИЕ ПРОГРАММНОГО СРЕДСТВА 19 РУКОВОДСТВО ПО ЭУСПЛУАТАЦИИ ПРОГРАММНОГО СРЕДСТВА 20 8.1. РУКОВОДСТВО СИСТЕМНОГО ПРОГРАММИСТА 20 ЗАКЛЮЧЕНИЕ 22 ЛИТЕРАТУРА 23 ВВЕДЕНИЕ Тема проекта – «Разработка подсистемы вывода в диагностической экспертной системе». Данная дипломная работа была выполнена на кафедре систем информатики в лаборатории искусственного интеллекта, Института Систем Информатики ...
... правила и укажет соответствие между ответами пользователя, правилами и ответом экспертной системы. 8. Правила типа "если-то" для представления знаний. В качестве кандидата на использование в экспертной системе можно рассматривать, в принципе, любой непротиворечивый формализм, в рамках которого можно описывать знания о некоторой проблемной области. Однако самым популярным формальным языком ...
... в экспертной системе с необходимостью должны быть сложными либо в смысле сложности каждого правила, либо в смысле их обилия. Экспертные системы, как правило, работают с предметными областями реального мира, а не с тем, что специалисты в области искусственного интеллекта называют игрушечными предметными областями. В предметной области реального мира тот, кто решает задачу, применяет фактическую ...
... и реализации прототипа и выработка рекомендаций по доводке системы до промышленного варианта. Средняя продолжительность 1 - 2 недели. Глава 3. Анализ теории экспертных систем и выводы 3.1.Выбор подходящей проблемы для разработки экспертной системы. Этот этап включает деятельность, предшествующую решению начать разрабатывать конкретную ЭС. Он включает: - определение проблемной области и ...
0 комментариев