2 Задача 2. Пометка занятых ячеек памяти

 

Общая постановка нашей задачи следующая: после некоторой работы в оперативной памяти находится некоторое количество связных списков. Требуется, каким-то образом пометить все ячейки занятые этими списками. Для упрощения и без особых потерь, мы можем положить, что список один. В прошлой лекции мы рассмотрели ситуацию когда связный список представляет собой двоичное дерево. Тема сегодняшнего рассмотрения - ситуация когда список представляет собой произвольную сетевую структуру.

В чём проблема.

Задача пометки упирается в задачу обхода списка. Если мы научимся обходить связный список, то проблема пометки решится сама собой. Задача же обхода произвольного списка имеет тривиальное решение. А именно, мы можем в каждом узле имеющем некоторое количество указателей ВПЕРЁД завести такое количество указателей НАЗАД и счётчик вхождений в данный узел. Следующий алгоритм будет решением задачи:

При вхождении в узел

Если есть неиспользованные указатели ВПЕРЁД

ТО перейти на узел по очередному указателю ВПЕРЁД

ИНАЧЕ

Если есть неиспользованные указатели НАЗАД

ТО перейти на узел по очередному указателю НАЗАД

Это очень общий алгоритм и мы не будем рассматривать его детально, так как он всё равно не годится из-за необходимости заводить большое количество дополнительных указателей. Вспомним, что ранее рассмотренный алгоритм (алгоритм ДОЙЧА) имеет смысл только потому, что он требует на два указателя лишь одного дополнительного поля. А стало быть проблема заключается в том, что нам нужен алгоритм не требующий больших ресурсов памяти для своей работы.

Небольшой предварительный анализ

Суть алгоритма Дойча в том, что в нём для запоминания пути назад используются уже имеющиеся указатели и одно маленькое поле back. Данное поле представляет собой однозначное двоичное число которым можно закодировать два числовых значения или что то же самое пронумеровать два указателя, поэтому алгоритм работает только с двоичным деревом. Очевидно, добавление ещё одного битового поля увеличит количество указателей которые можно пронумеровать.

Идея.

Я думаю, что намек уже понятен. Если мы заведем дополнительное поле размером в один байт, то это даст нам возможность пронумеровать 256 указателей.

Но это конечно ещё не всё. Понятно, что каждый из этих указателей может указывать как вперёд так и назад (Помните, что каждый из указателей используется как для запоминания пути вперёд так и пути назад). Возникает важный вопрос: как запомнить какой куда? Для ответа договоримся о следующем:

Во-первых, пусть множество указателей в каждом узле упорядочено линейно (сейчас не важно как именно это осуществляется, важно, что порядок есть и он линейный)

Во-вторых, каким-то образом для каждого узла определено сколько у него указателей, например для хранения этой информации заведена ещё одна переменная.

Алгоритм, как и алгоритм Дойча, должен уметь две вещи: во-первых запоминать путь назад и во вторых, определять в каждом узле указатель указывающий на узел в который необходимо перейти.

Общее описание алгоритма.

Для того, чтобы иметь возможность двигаться по сети узлов в двух направлениях нужно иметь два рабочих указателя. Назовём их ВПЕРЁД и ОБРАТНО. Указатель ВПЕРЁД содержит адрес узла в который необходимо перейти на следующем шаге, а указатель ОБРАТНО содержит адрес узла из которого Исполнитель вышел на предыдущем шаге. Сие означает, что на каждом шаге (в каждом узле) нужно выполнить операции определения этих адресов.

Рассмотрим некий узел, назовём его Текущий. Когда Исполнитель зайдет в этот узел первый раз, он должен будет перейти на узел чей адрес хранится в указателе1. То есть ВПЕРЕД=Указатель1. Понятно, что это первое и последнее использование указателя Указатель1. Он больше для запоминания пути вперёд не нужен, а стало быть его теперь можно использовать для запоминания пути назад, для чего можно выполнить операцию Указатель1=ОБРАТНО.

Когда исполнитель зайдёт в текущий узел второй раз он тоже самое проделает с указателем2. Это исполнитель будет проделывать до тех пор пока есть указатели ВПЕРЁД которыми он ещё не пользовался. А вот дополнительное однобайтовое поле (назовём его счетчик) как раз и пригодится для запоминание номера указателя которым ещё не пользовались.

Перед началом работы проинициализируем поле Счетчик всех узлов сети нулями. Затем каждый раз при входе в очередной узел будем увеличивать значение счётчика на 1. Тогда его значение будет определять номер неиспользованного указателя.

Рано или поздно исполнитель израсходует все указатели и попав в наш текущий узел в очередной раз обнаружит, что вперёд идти некуда, а стало быть нужно идти назад. Если исполнитель впервые пришел к такому выводу, то очевидно путь назад хранится в последнем указателе. Если исполнитель уже второй раз в данном узле решил идти назад, то адрес его пути хранится в предпоследнем указателе и т.д.

Иначе говоря

Идя вперёд исполнитель использует все указатели узла последовательно начиная с первого, занося в них адреса из указателя ОБРАТНО. Когда исполнитель идёт назад он использует указатели в обратном порядке. Относительно динамики изменения счётчика можно сказать, что пока в узле есть неиспользованные указатели вперёд, счётчик растёт (+1 на каждом шаге). Когда начинается движение назад, счётчик убывает (-1 на каждом шаге).

Аналогия с лабиринтом

Представьте себя в лабиринте в котором узлу соответствуют комнаты, а указатели это коридоры. Счетчик это некоторая доска на которой мы можем записывать число и кроме того у нас есть возможность соединять коридоры линиями. Чтобы корректно проверить весь лабиринт мы должны обойти все коридоры по порядку и на каждом шаге коридор из которого вошли в комнату соединять направленным отрезком с тем коридором в который собираемся уйти. А номер коридора в который идти мы будем определять по числу написанному на доске. Когда не останется ни одного не пройденного коридора, мы начиная с последнего и до первого будем выполнять следующее:


Информация о работе «Распределение памяти»
Раздел: Информатика, программирование
Количество знаков с пробелами: 39776
Количество таблиц: 6
Количество изображений: 2

Похожие работы

Скачать
13544
0
0

... 12 Библиографический список................................................................. 15 Введение   Целью работы является демонстрация работы с динамической памятью на примере программ разработанных к заданиям 2, 6, 8, 10, 12, 14, 16 из методического указания [1]. Динамическое распределение памяти предоставляет программисту большие возможности при обращении к ресурсам памяти в ...

Скачать
28336
0
12

... задачи П4 место загружается задача П6, поступившая в момент t3. Рис. 2.10. Распределение памяти динамическими разделами Задачами операционной системы при реализации данного метода управления памятью является: ведение таблиц свободных и занятых областей, в которых указываются начальные адреса и размеры участков памяти, при поступлении новой задачи - анализ запроса, просмотр ...

Скачать
48910
4
3

... .) В системах, в которых страницы инструкций (в противоположность страницам данных) являются реентерабельными, бит изменения никогда не устанавливается. 2. Разработка алгоритма управления оперативной памятью Ниже приведён алгоритм управления оперативной памятью в системе Linux. В основе всего лежат страницы памяти. В ядре они описываются структурой mem_map_t. typedef struct page { /* ...

Скачать
21451
0
0

... новые следы памяти могут поступать в активном или неактивном состоянии. Именно это свойство лежит в основе исключительно важного феномена — так называемого латентного обучения. Концепция состояний памяти свободна от условного деления на кратковременную и долговременную и потому может объяснять феномены, которые остаются непонятными с точки зрения временного подхода к организации памяти. То, что ...

0 комментариев


Наверх