1. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
Большинство средств защиты информации базируется на использовании криптографических шифров и процедур шифрования расшифрования. В соответствии со стандартом ГОСТ 28147-89 под шифром понимают совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, задаваемых ключом и алгоритмом криптографического преобразования.
Ключ - это конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор только одного варианта из всех возможных для данного алгоритма.
Основной характеристикой шифра является криптостойкость, которая определяет его стойкость к раскрытию методами криптоанализа. Обычно эта характеристика определяется интервалом времени, необходимым для раскрытия шифра.
К шифрам, используемым для криптографической защиты информации, предъявляется ряд требований:
· достаточная криптостойкость (надежность закрытия данных);
· простота процедур шифрования и расшифрования;
· незначительная избыточность информации за счет шифрования;
· нечувствительность к небольшим ошибкам шифрования и др.
В той или иной мере этим требованиям отвечают:
· шифры перестановок:
· шифры замены;
· шифры гаммирования;
· шифры, основанные на аналитических преобразованиях шифруемых данных.
Шифрование перестановкой заключается в том, что символы шифруемого текста переставляются по определенному правилу в пределах некоторого блока этого текста. При достаточной длине блока, и пределах которого осуществляется перестановка, и сложном неповторяющемся порядке перестановки можно достигнуть приемлемой для простых практических приложений стойкости шифра.
Шифрование заменой (подстановкой) заключается в том, что символы шифруемого текста заменяются символами того же или другого алфавита в соответствии с заранее обусловленной схемой замены.
Шифрование гаммированием заключается в том, что символы шифруемою текста складываются с символами некоторой случайной последовательности, именуемой гаммой шифра. Стойкость шифрования определяется в основном длиной (периодом) неповторяющейся части гаммы шифра. Поскольку с помощью ЭВМ можно генерировать практически бесконечную гамму шифра, то данный способ является одним из основных для шифрования информации в автоматизированных системах.
Шифрование аналитическим преобразованием заключается в том, что шифруемый текст преобразуется по некоторому аналитическому правилу (формуле).
Например, можно использовать правило умножения вектора на матрицу, причем умножаемая матрица является ключом шифрования (поэтому ее размер и содержание должны храниться в секрете), а символами умножаемого вектора последовательно служат символы шифруемого текста. Другим примером может служить использование так называемых однонаправленных функций для построения криптосистем с открытым ключом.
Процессы шифрования и расшифрования осуществляются в рамках некоторой криптосистемы.
1.1 Традиционные симметричные криптосистемы. Принципы криптографической защиты информации
Криптография представляет собой совокупность методов преобразования данных, направленных на то, чтобы сделать эти данные бесполезными для противника. Такие преобразования позволяют решить две главные проблемы защиты данных: проблемы конфиденциальности (путем лишения противника возможности извлечь информацию из канала связи) и проблему целостности (путем лишения противника возможности изменить сообщение так, чтобы изменился его смысл, или ввести ложную информацию в канал связи). Проблемы конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.
Обобщенная схема криптографической системы, обеспечивающей шифрование передаваемой информации, показана на рис.1. Отправитель генерирует открытый текст исходного сообщения , которое должно быть передано законному получателю по незащищенному каналу. За каналом следит перехватчик с целью перехватить и раскрыть передаваемое сообщение. Для того чтобы перехватчик не смог узнать содержание сообщения , отправитель шифрует его с помощью обратимого преобразования и получает шифртекст (или криптограмму) , который отправляет получателю.
Законный получатель, приняв шифртекст С, расшифровывает его с помощью обратного преобразования и получает исходное сообщение ввиде открытого текста :
Рис. 2. Обобщённая схема криптосистемы
Преобразование выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, c помощью которого выбирается отдельное используемое преобразование, называется криптографическим ключом . Криптосистема имеет разные варианты реализации: набор инструкции, аппаратные средства, комплекс программ компьютера, которые позволяют зашифровать открытый текст и расшифровать шифртекст различными способами, один из которых выбирается с помощью конкретного ключа .
Говоря более формально, криптографическая система - это однопараметрическое семействообратимых преобразований из пространства сообщений открытого текста в пространство С шифрованных текстов. Параметр (ключ) выбирается из конечного множества К, называемого пространством ключей.
Преобразование шифрования может быть симметричным или асимметричным относительно преобразования расшифрования. Это важное свойство функции преобразования определяет два класса криптосистем:
· симметричные (одноключевые) криптосистемы;
· асимметричные (двухключевые) криптосистемы (с открытым ключом).
Схема симметричной криптосистемы с одним секретным ключом показана на рис.2. В ней используются одинаковые секретные ключи в блоке шифрования и блоке расшифрования.
Обобщенная схема асимметричной криптосистемы с двумя разными ключами и показана на рис. 3.
Рис. 3. Обобщённая схема ассиметричной криптосистемы с открытым ключом.
В этой криптосистеме один из ключей является открытым, а другой - секретным.
В симметричной криптосистеме секретный ключ надо передавать отправителю и получателю по защищенному каналу распространения ключей, например такому, как курьерская служба. На рис. 2 этот канал показан "экранированной" линией. Существуют и другие способы распределения секретных ключей. В асимметричной криптосистеме передают по незащищенному каналу только открытый ключ, а секретный ключ сохраняют на месте его генерации.
Существуют два основных современных класса шифров: поточные и блочные шифры.
... » использовались раньше, а в наши дни они заложены практически в любой, даже самой сложной программе шифрования. Каждый из рассмотренных методов реализует собственный способ криптографической защиты информации и имеет собственные достоинства и недостатки, но их общей важнейшей характеристикой является стойкость. Под этим понимается минимальный объем зашифрованного текста, статистическим анализом ...
... , а предел роста наступит приблизительно в 2030 г. Других способов повышения вычислительной мощности нет. Таким образом, с точки зрения защиты информации криптографическими методами, анализ потенциальных возможностей метода распределенных вычислений представляет как для криптоаналитиков, так и для разработчиков криптографических систем значительный интерес. Попробуем, поэтому, проанализировать ...
... модулей. 6. С начала 90-х годов широко обсуждается возможность реализации протоколов асимметричной криптографии на основе квантово-механических эффектов [44], [45]. Перспективы практического применения асимметричных алгоритмов Юридические вопросы использования асимметричных алгоритмов в системах Вопросы патентной чистоты Большинство алгоритмов асимметричной криптографии защищено патентами. ...
... не к ключам!) и поэтому может зашифровывать и дешифровывать любую информацию; 2.7 Выводы по разделу 2. Подводя итоги вышесказанного, можно уверенно заявить, что криптографическими системами защиты называються совокупность различных методов и средств, благодаря которым исходная информация кодируеться, передаеться и расшифровываеться. Существуют различные криптографические системы защиты, ...
0 комментариев