1. Запустите программу Microsoft Access. Откройте БД (например, учебную базу данных "Деканат").

2. Создайте Автоотчет: ленточный, используя в качестве источника данных таблицу (например, Студенты). Отчет открывается в режиме Предварительного просмотра, который позволяет увидеть, как будет выглядеть отчет в распечатанном виде.

3. Перейдите в режим Конструктора и выполните редактирование и форматирование отчета. Для перехода из режима предварительного просмотра в режим конструктора необходимо щелкнуть команду Закрыть на панели инструментов окна приложения Access. На экране появится отчет в режиме Конструктора.


Редактирование:

1) удалите поля код студента в верхнем колонтитуле и области данных;

2) переместите влево все поля в верхнем колонтитуле и области данных.

3) Измените надпись в заголовке страницы

В разделе Заголовок отчета выделить надпись Студенты.

Поместите указатель мыши справа от слова Студенты, так чтобы указатель принял форму вертикальной черты (курсора ввода), и щелкните в этой позиции.

Введите НТУ "ХПИ" и нажмите Enter.

4) Переместите Надпись. В Нижнем колонтитуле выделить поле =Now () и перетащить его в Заголовок отчета под название Студенты. Дата будет отображаться под заголовком.

5) На панели инструментов Конструктор отчетов щелкнуть на кнопке Предварительный просмотр, чтобы просмотреть отчет.

Форматирование:

1) Выделите заголовок Студенты НТУ "ХПИ"

2) Измените гарнитуру, начертание и цвет шрифта, а также цвет заливки фона.

3) На панели инструментов Конструктор отчетов щелкнуть на кнопке Предварительный просмотр, чтобы просмотреть отчет.

Изменение стиля:

Для изменения стиля выполните следующее:

На панели инструментов Конструктора отчетов щелкнуть на кнопке Автоформат, откроется диалоговое окно Автоформат.

В списке Стили объекта "отчет - автоформат" щелкнуть на пункте Строгий и затем щелкнуть на кнопке ОК. Отчет будет отформатирован в стиле Строгий.

Переключится в режим Предварительный просмотр. Отчет отобразится в выбранном вами стиле. Впредь все отчеты созданные с помощью функции Автоотчет будут иметь стиль Строгий, пока вы не зададите другой стиль в окне Автоформат.

Сохранить и закрыть отчет.


Экспертные и обучающиеся системы

Экспертные системы являются одним из основных приложений искусственного интеллекта. Искусственный интеллект - это один из разделов информатики, в котором рассматриваются задачи аппаратного и программного моделирования тех видов человеческой деятельности, которые считаются интеллектуальными.

Результаты исследований по искусственному интеллекту используются в интеллектуальных системах, которые способны решать творческие задачи, принадлежащие конкретной предметной области, знания о которой хранятся в памяти (базе знаний) системы. Системы искусственного интеллекта ориентированы на решение большого класса задач, к которым относятся так называемые частично структурированные или неструктурированные задачи (слабо формализуемые или неформализуемые задачи).

Информационные системы, используемые для решения частично структурированных задач, подразделяются на два вида:

Создающие управленческие отчеты (выполняющие обработку данных: поиск, сортировку, фильтрацию). Принятие решения осуществляется на основе сведений, содержащихся в этих отчетах.

Разрабатывающие возможные альтернативы решения. Принятие решения сводится к выбору одной из предложенных альтернатив.

Информационные системы, разрабатывающие альтернативы решений, могут быть модельными или экспертными:

Модельные информационные системы предоставляют пользователю модели (математические, статистические, финансовые и т.д.), которые помогают обеспечить выработку и оценку альтернатив решения.

Экспертные информационные системы обеспечивают выработку и оценку возможных альтернатив пользователем за счет создания систем, основанных на знаниях, полученных от специалистов - экспертов.

Экспертные системы - это программы для компьютеров, аккумулирующие знания специалистов - экспертов в конкретных предметных областях, которые предназначены для получения приемлемых решений в процессе обработки информации. Экспертные системы трансформируют опыт экспертов в какой-либо конкретной отрасли знаний в форму эвристических правил и предназначены для консультаций менее квалифицированных специалистов.

Известно, что знания существуют в двух видах: коллективный опыт, личный опыт. Если предметная область представлена коллективным опытом (например, высшая математика), то эта предметная область не нуждается в экспертных системах. Если в предметной области большая часть знаний является личным опытом специалистов высокого уровня и эти знания являются слабоструктурированными, то такая область нуждается в экспертных системах. Современные экспертные системы нашли широкое применение во всех сферах экономики.

База знаний является ядром экспертной системы. Переход от данных к знаниям является следствием развития информационных систем. Для хранения данных применяются базы данных, а для хранения знаний - базы знаний. В базе данных, как правило, хранятся большие массивы данных с относительно небольшой стоимостью, а в базах знаний хранятся небольшие по объему, но дорогие информационные массивы.

База знаний - это совокупность знаний, описанных с использованием выбранной формы их представления. Наполнение базы знаний является одной из самых сложных задач, которая связана с выбором знаний их формализацией и интерпретацией.

Экспертная система состоит из:

базы знаний (в составе рабочей памяти и базы правил), предназначенной для хранения исходных и промежуточных фактов в рабочей памяти (ее еще называют базой данных) и хранения моделей и правил манипулирования моделями в базе правил

решателя задач (интерпретатора), который обеспечивает реализацию последовательности правил для решения конкретной задачи на основе фактов и правил, хранящейся в базах данных и базах знаний

подсистемы пояснения, позволяет пользователю получить ответы на вопрос: "Почему система приняла такое решение?"

подсистемы приобретения знаний, предназначенной как для добавления в базу знаний новых правил, так и модификации имеющихся правил.

интерфейса пользователя, комплекса программ, реализующих диалог пользователя с системой на стадии ввода информации, и получения результатов.

Экспертные системы отличаются от традиционных систем обработки данных тем, что в них, как правило, используется символьный способ представления, символьный вывод и эвристический поиск решений. Для решения слабо формализуемых или неформализуемых задач более перспективными являются нейронные сети или нейрокомпьютеры.

Основу нейрокомпьютеров составляют нейронные сети - иерархические организованные параллельные соединения адаптивных элементов - нейронов, которые обеспечивают взаимодействие с объектами реального мира так же, как и биологическая нервная система.

Большие успехи использования нейросетей достигнуты при создании самообучающихся экспертных систем. Сеть настраивают, т.е. обучают, пропуская через нее все известные решения и добиваясь получения требуемых ответов на выходе. Настройка состоит в подборе параметров нейронов. Часто используют специализированную программу обучения, которая занимается обучением сети. После обучения система готова к работе.

Если в экспертную систему ее создатели предварительно закладывают знания в определенной форме, то в нейронных сетях неизвестно даже разработчикам, как формируются знания в ее структуре в процессе обучении и самообучении, т.е. сеть представляет собой "черный ящик".

Нейрокомпьютеры, как системы искусственного интеллекта, являются весьма перспективными и могут бесконечно совершенствоваться в своем развитии. В настоящее время системы искусственного интеллекта в форме экспертных систем и нейронных сетей находят широкое применение при решении финансово - экономических проблем.


Иcтoчник

1.         Элeктpoнный учeбник, - "Работа с бaзами дaнныx" http://www.lessons-tva. info/ дaтa oбpaщeния: 12.11.10

2.         Элeктpoнный учeбник, - "Экспертные системы" http://www.lessons-tva. info/ дaтa oбpaщeния: 12.11.10


Информация о работе «Создание отчета как объекта базы данных. Экспертные и обучающиеся системы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 13955
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
362757
48
34

... и в то же время мощного математического аппарата, опирающегося главным образом на теорию множеств и математическую логику и обеспечивающего теоретический базис реляционного подхода к организации баз данных; 3.         возможность ненавигационного манипулирования данными без необходимости знания конкретной физической организации баз данных во внешней памяти. Однако реляционные системы далеко не ...

Скачать
54157
0
0

... программ в единый информационный и программный продукт, а также всесторонним применением современных приемов манипулирования такими продуктами с использованием средств вычислительной техники. К середине 90-ых годов в РФ в области фактографических баз данных в науке сложилась ситуация, характеризующая следующими особенностями: 1. Существует значительное количество практически не связанных друг с ...

Скачать
308601
37
3

... производительных сил, тем быстрее повышается Б. населения. В еще большей степени Б. связано с эффективностью социально-экономической политики в данном обществе. Информатика как наука. Предмет и объект прикладной информатики. Системы счисления Инфоpматика — это основанная на использовании компьютерной техники дисциплина, изучающая структуру и общие свойства информации, а также закономерности и ...

Скачать
107836
5
24

... , и развитие информационной системы ГОУ НПО ПУ № 33, которую в свою очередь можно оценить как удовлетворительную; -была выявлена необходимость проектирования информационно-справочной системы для повышения эффективности управления ГОУ НПО ПУ № 33. Путем интервьюирования руководителя организации нами были выявлены наиболее важные направления деятельности, по которым необходимы сведения в составе ...

0 комментариев


Наверх