2.3. Thin Film Transistor (TFT),
Thin Film Transistor (TFT), т.е. тонкопленочный транзистор, действительно очень тонкий, его толщина - в пределах от 1/10 до 1/100 микрона. Технология создания TFT очень сложна, при этом имеются трудности с достижением приемлемого процента годных изделий из-за того, что число используемых транзисторов очень велико. Заметим, что монитор, который может отображать изображение с разрешением 800х600 пикселей в SVGA режиме и только с тремя цветами, имеет 1440000 отдельных транзисторов. Производители устанавливают нормы на предельное количество транзисторов, которые могут быть нерабочими в LCD-дисплее. Правда, у каждого производителя свое мнение о том, какое количество транзисторов может не работать.
Вкратце расскажу о разрешении LCD-мониторов. Это разрешение одно, и его еще называют native, оно соответствует максимальному физическому разрешению CRT-мониторов. Именно в native разрешении LCD-монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD-монитора фиксирован. Например, если LCD-монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай: пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование); суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако, из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому при выборе LCD-монитора важно четко знать, какое именно разрешение вам нужно.
Отдельно стоит упомянуть о яркости LCD-мониторов, так как пока нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD-монитор. При этом в центре яркость LCD-монитора может быть на 25% выше, чем у краев экрана. Единственный способ определить, подходит ли вам яркость конкретного LCD-монитора, это сравнить его яркость с другими LCD-мониторами.
И последний параметр, о котором нужно упомянуть, это контрастность. Контрастность LCD-монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов. Но, как и в случае с яркостью, пока нет никаких стандартов, поэтому главным определяющим фактором являются ваши глаза.
Стоит отметить и такую особенность части LCD-мониторов, как возможность поворота самого экрана на 90°, с одновременным автоматическим разворотом изображения. В результате, например, если вы занимаетесь версткой, то теперь лист формата A4 можно полностью уместить на экране без необходимости использовать вертикальную прокрутку, чтобы увидеть весь текст на странице. Правда, среди CRT-мониторов тоже есть модели с такой возможностью, но они крайне редки. В случае с LCD-мониторами эта функция становиться почти стандартной.
К преимуществам LCD-мониторов можно отнести то, что они действительно плоские в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствие искажений на экране и массы других проблем, свойственных традиционным CRT-мониторам. Добавим, что потребляемая и рассеиваемая мощность у LCD-мониторов существенно ниже, чем у CRT-мониторов. Ниже я привожу сводную таблицу сравнения LCD-мониторов с активной матрицей и CRT-мониторов:
Параметры | Active Matrix LCD monitor | CRT monitor |
Разрешение | Одно разрешение с фиксированным размером пикселей. Оптимально можно использовать только в этом разрешении; в зависимости от поддерживаемых функций расширения или компрессии можно использовать более высокое или более низкое разрешение, но они не оптимальны. | Поддерживаются различные разрешения. При всех поддерживаемых разрешениях монитор можно использовать оптимальным образом. Ограничение накладывается только приемлемостью частоты регенерации. |
Частота регенерации | Оптимальная частота 60 Гц, чего достаточно для отсутствия мерцания. | Только при частотах свыше 75 Гц отсутствует явно заметное мерцание. |
Точность отображения цвета | Поддерживается True Color и имитируется требуемая цветовая температура. | Поддерживается True Color и при этом на рынке имеется масса устройств калибровки цвета, что является несомненным плюсом. |
Формирование изображения | Изображение формируется пикселями, число которых зависят только от конкретного разрешения LCD-панели. Шаг пикселей зависит только от размера самих пикселей, но не от расстояния между ними. Каждый пиксель формируется индивидуально, что обеспечивает великолепную фокусировку, ясность и четкость. Изображение получается более целостным и гладким. | Пиксели формируются группой точек (триады) или полосок. Шаг точки или линии зависит от расстояния между точками или линиями одного цвета. В результате, четкость и ясность изображения сильно зависит от размера шага точки или шага линии и от качества CRT. |
Угол обзора | В настоящее время стандартным является угол обзора 120o и выше; с дальнейшим развитием технологий следует ожидать увеличения угла обзора. | Отличный обзор под любым углом. |
Энергопотребление и излучения | Практически никаких опасных электромагнитных излучений нет. Уровень потребления энергии примерно на 70% ниже, чем у стандартных CRT-мониторов. | Всегда присутствует электромагнитное излучение, однако его уровень зависит от того, соответствует ли CRT d какому-либо стандарту безопасности. Потребление энергии в рабочем состоянии на уровне 80 Вт. |
Интерфейс монитора | Цифровой интерфейс, однако большинство LCD-мониторов имеют встроенный аналоговый интерфейс для подключения к наиболее распространенным аналоговым выходам видеоадаптеров. | Аналоговый интерфейс. |
Сфера применения | Стандартный дисплей для мобильных систем. В последнее время начинает завоевывать место и в качестве монитора для настольных компьютеров. Идеально подходит в качестве дисплея для компьютеров, т.е. для работы в интернет, с текстовыми процессорами и т.д. | Стандартный монитор для настольных компьютеров. Крайне редко используются в мобильном виде. Идеально подходит для отображения видео и анимации. |
Главной проблемой развития технологий LCD для сектора настольных компьютеров, похоже, является размер монитора, который влияет на его стоимость. С ростом размеров дисплеев снижаются производственные возможности. В настоящее время максимальная диагональ LCD-монитора, пригодного к массовому производству, достигает 20", а недавно некоторые разработчики представили 43" модели и даже 64" модели TFT-LCD-мониторов, готовых к началу коммерческого производства.
Но похоже, что исход битвы между CRT и LCD-мониторами за место на рынке уже предрешен. Причем не в пользу CRT-мониторов. Будущее, судя по всему, все же за LCD-мониторами с активной матрицей. Исход битвы стал ясен после того, как IBM объявила о выпуска монитора с матрицей, имеющей 200 пикселей на дюйм, то есть, с плотностью в два раза больше, чем у CRT-мониторов. Как утверждают эксперты, качество картинки отличается так же, как при печати на матричном и лазерном принтерах. Поэтому вопрос перехода к повсеместному использованию LCD-мониторов лишь в их цене.
Тем не менее, существуют и другие технологии, которые создают и развивают разные производители, и некоторые из этих технологий носят название PDP (Plasma Display Panels), или просто "plasma", и FED (Field Emission Display). Расскажем немного об этих технологиях.
Такие крупнейшие производители, как Fujitsu, Matsushita, Mitsubishi, NEC, Pioneer и другие, уже начали производство плазменных мониторов с диагональю 40" и более, причем некоторые модели уже готовы для массового производства. Работа плазменных мониторов очень похожа на работу неоновых ламп, которые сделаны в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов между которыми зажигается электрический разряд и возникает свечение. Плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком. Фактически, каждый пиксель на экране работает, как обычная флуоресцентная лампа (иначе говоря, лампа дневного света). Высокая яркость и контрастность наряду с отсутствием дрожания являются большими преимуществами таких мониторов. Кроме того, угол по отношению к нормали, под которым можно увидеть нормальное изображение на плазменных мониторах, существенно больше 45°, чем в случае с LCD-мониторами. Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким, поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений такие мониторы используются пока только для конференций, презентаций, информационных щитов, т.е. там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров. Подобные телевизоры уже есть, они имеют большую диагональ, очень тонкие (по сравнению со стандартными телевизорами) и стоят бешеных денег - $10000 и выше.
Ряд ведущих разработчиков в области LCD и Plasma-экранов совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD-экранов с активной матрицей.
Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света, например, традиционные CRT-мониторы и плазменные, т.е. это устройства, элементы экрана которых излучают свет во внешний мир и 2) мониторы трансляционного типа, такие, как LCD-мониторы. Одним из лучших технологических направлений в области создания мониторов, которое совмещает в себе особенности обеих технологий, описанных нами выше, является технология FED (Field Emission Display). Мониторы FED основаны на процессе, который немного похож на тот, что применяется в CRT-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Главное отличие между CRT и FED мониторами состоит в том, что CRT-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих панель, покрытую люминофорным слоем, а в FED-мониторе используется множество маленьких источников электронов, расположенных за каждым элементом экрана, и все они размещаются в пространстве, по глубине меньшем, чем требуется для CRT. Каждый источник электронов управляется отдельным электронным элементом, так же, как это происходит в LCD-мониторах, и каждый пиксель затем излучает свет, благодаря воздействию электронов на люминофорные элементы, как и в традиционных CRT-мониторах. При этом FED-мониторы очень тонкие.
Есть и еще одна новая и, на мой взгляд, перспективная технология, это LEP (Light Emission Plastics), или светящий пластик.
5. LEP
5.1. ТехнологияВ течении последних 30 лет внимание многих ученых было приковано к полимерным материалам (проще говоря - пластикам), обладающим свойствами проводимости и полупроводимости. Тем, кого интересует, как и почему они этим свойством обладают, крайне рекомендую посетить сайт компании CDT - там это описано на хорошем научном уровне. Для нормального человека достаточно знать, что такие полимеры, во-первых, существуют, а во-вторых, обладают рядом преимуществ по сравнению с традиционными материалами. Главными преимуществами являются простота и дешевизна производства, а также возможность синтеза новых материалов с заданными свойствами. Главными недостатками - непродолжительный срок службы и низкая мобильность зарядов вследствие аморфной структуры пластика. Однако, в последнее время недостатки постепенно удается преодолеть, в частности, за счет применения многослойных материалов.
5.2. ПрименениеДостаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Глобальной целью в этом направлении компания CDT считает ни много, ни мало - вытеснение меди в качестве материала для изготовления проводящих дорожек печатных плат. Правда, для этого необходимо еще увеличить срок службы и повысить проводимость пластика.
Однако наиболее интересным применением пластиковых полупроводников на данный момент является создание разного рода устройств отображения информации на их базе. О том, что полупроводящий пластик под действием электрического тока может испускать фотоны (то есть, светиться), знали давно. Но крайне низкая (0.01%) квантовая эффективность этого процесса (отношение числа испущенных фотонов к числу пропущенных через пластик зарядов) делала практическое применение этого эффекта невозможным. За последние 5 лет компания CDT совершила прорыв в этом направлении, доведя квантовую эффективность двуслойного пластика до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Помимо повышения эффективности удалось расширить и спектр излучения. Теперь пластик может испускать свет в диапазоне от синего до ближнего инфракрасного с эффективностью порядка 1%.
По заявлению технического директора CDT Ltd. Пола Мея (Paul May), компании удалось достичь срока службы более 7000 часов при 20Со и около 1100 часов при 80Со без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, и срока хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности (shell-life) более 18 месяцев. С использованием "инкапсуляции", то есть помещения устройств в специальный защитный корпус, "срок хранения" возрастает до 5 лет, что на данный момент является фактическим стандартом. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений. О том, что промышленный мир серьезно относится к LEP-технологии, свидетельствует покупка компанией Philips Components B.V. лицензии на использование этой технологии и инвестиции Intel в компанию CDT. Итак, что же есть у компании на сегодняшний день.
5.3. LEP-дисплеи: день сегодняшнийНа сегодняшний день компания может представить монохромные (желтого свечения) LEP-дисплеи, приближающиеся по эффективности к жидкокристаллическим дисплеям LCD (Liquid Crystal Display), уступающие им по сроку службы, но имеющие ряд существенных преимуществ.
· Поскольку многие стадии процесса производства LEP- дисплеев совпадают с аналогичными стадиями производства LCD, производство легко переоборудовать. Кроме того, технология LEP позволяет наносить пластик на гибкую подложку большой площади, что невозможно для неорганического светодиода (там приходится использовать матрицу диодов).
· Поскольку пластик сам излучает свет, не нужна подсветка и прочие хитрости, необходимые для получения цветного изображения на LCD-мониторе. Больше того, LEP-монитор обеспечивает 180-градусный угол обзора.
· Поскольку устройство дисплея предельно просто: вертикальные электроды с одной стороны пластика, горизонтальные - с другой, изменением числа электродов на единицу протяженности по горизонтали или вертикали можно добиваться любого необходимого разрешения, а также, при необходимости, различной формы пиксела.
· Поскольку LEP-дисплей работает при низком напряжении питания (менее 3 V) и имеет малый вес, его можно использовать в портативных устройствах, питающихся от батарей.
· Поскольку LEP-дисплей обладает крайне малым временем переключения (менее 1 микросекунды), его можно использовать для воспроизведения видеоинформации.
· Поскольку слой пластика очень тонок, можно использовать специальные поляризующие покрытия для достижения высокой контрастности изображения даже при сильной внешней засветке.
Эти преимущества плюс дешевизна привели к возникновению у LEP-технологии достаточно радужных перспектив.
5.4. LEP-дисплеи: день завтрашнийДень 16 февраля 1998 года стал историческим для LEP-технологии: компании CDT и Seiko-Epson продемонстрировали первый в мире пластиковый телевизионный экран.Правда, он пока черно-белый (точнее - черно-желтый) и размером всего 50 мм2, но толщина в 2 мм впечатляет. Уже сейчас такие дисплеи могут найти применение в видеокамерах и цифровых фотоаппаратах, а к концу года компании планируют представить полноразмерный цветной дисплей (не уточняя, правда, что такое "полный размер"). Причины, по которым Seiko-Epson приняла участие в этом проекте, по словам Генерального менеджера по базовым исследованиям (General Manager of basic research) компании доктора Шимоды (Dr. Shimoda), заключаются в том, что сочетание LEP-технологии с многослойной TFT (Thin Film Transistor) технологией и технологией струйной печати, в которых Seiko-Epson является мировым лидером, а также возможность использования для производства LEP-дисплеев большей части уже имеющегося оборудования позволит достичь быстрого прогресса в данной программе. "LEP-дисплеи, - считает доктор Шимода, - станут конкурентоспособными не только по сравнению с LCD, но и по сравнению с обычными дисплеями на базе CRT (Catod Ray Tube, или электронно-лучевая трубка) как по качеству, так и по цене.
... соответствовать стандарту на энергопотребление NUTEK и соответствовать Европейским стандартам на пожарную и электрическую безопасность. 9.1.2. TCO '95 Стандарт TCO’95 распространяется на весь персональный компьютер, т.е. на монитор, системный блок и клавиатуру и касается эргономических свойств, излучений (электрических и магнитных полей, шума и тепла), режимов энергосбережения и экологии (с ...
... повсеместно: в промышленности торговых точках медицине банковских системах справочных системах презентациях и демонстрациях играх для обучения (тренажеры, экзаменаторы) Преимущества сенсорных мониторов: для использования не требуется специальных знаний позволяют отказаться от использования мыши и клавиатуры малочувствительны к загрязнению и агрессивным средам позволяют получить ...
... и синий субпиксели приглушить, а красный оставить гореть ярко – получается красный цвет, ну и так далее. Расстояния между центрами пикселей достаточно малы (от 0.2 до 0.3 мм – в зависимости от конкретной модели монитора), а уж субпиксели и вовсе микроскопические, поэтому издали мы не видим всей этой разноцветной мешанины и три ярко горящих субпикселя воспринимаем как одну белую точку. Итак, будь ...
... , и более высокая цена. На рис. 1.4. показаны типичные электронно-лучевые мониторы выпуклого и плоского типов. 1.5 Цифровые сигналы для электронно-лучевых мониторов Рис. 1.4. Выпуклый ЭЛТ-монитор (слева) и плоский монитор Sony Trinitron FD (справа) Последнее слово в технологии электронно-лучевых мониторов — это использование цифрового входа в соответствии со стандартом DVI (Digital Video ...
0 комментариев