Предмет: Теория Автоматического Управления
Тема:
ЗАДАЧИ СИНТЕЗА ОПТИМАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ
Задачи синтеза оптимальных систем управления
Статистический синтез заключается в отыскании и реализации оптимальных в определенном смысле свойств (структуры и параметров) системы по заданным статистическим характеристикам входных воздействий.
Существуют различные методы статистической оптимизации. Рассмотрим задачу, сформулированную Винером-Колмогоровым.
Постановка задачи Винера–Колмогорова.
![]() |
Дано: x (t) - полезный сигнал; z (t) - помеха; Kи (p) - оператор преобразования.
Рис. 1
Определить: оптимальную передаточную функцию - K0 (p).
Передаточная функция K0 (p) должна быть устойчивой и физически реализуемой. Если полезный сигнал - x (t) и помеха - z (t) представляют собой Гауссовские случайные процессы, то решение может быть найдено в классе линейных стационарных систем, в противном случае решение находится в классе нелинейных систем.
В зависимости от оператора Ки (р) рассматриваются следующие задачи:
Ки (р) = 1 - воспроизведения;
Ки (р) = 1/р - статистического интегрирования;
Ки (р) = р - статистического дифференцирования;
Ки (р) =
- статистического упреждения, экстраполяции, прогнозирования.
Таким образом, задача Винера-Колмогорова решается при следующих предположениях:
Сигнал и помеха представляют собой Гауссовские процессы.
Искомая система должна принадлежать к классу линейных систем.
Критерий оптимальности - минимум средней квадратичной ошибки.
Решение: Определим выражение для средней квадратичной ошибки

Средняя квадратичная ошибка равна

Мы получили некоторый функционал, в котором неизвестно к (t). Необходимо найти такое к (t), при котором ошибка будет минимальной.
Это задача минимизации функционала: она решается с использованием вариационного анализа.
Пусть
;
где:
- оптимальная функция веса;
- приращение.
Подставим это в исходное уравнение для ошибки и получим:
;
где А - функция, которая не зависит от а; В - функция, которая зависит от а; С - функция, которая зависит от а2.
Найдем экстремум по параметру а

к (t) -оптимально если а = 0 т.е. В = 0.

Откуда можно получить следующее выражение
(1)
Это интегральное уравнение Винера-Хопфа, оптимальная передаточная функция должна удовлетворять этому уравнению.
Решение уравнение Винера-Хопфа.
Строгое решение этого уравнения сложно, решим это уравнение простым путем предложенным Шенноном. Уравнению Винера-Хопфа в частотной области соответствует следующее выражение:
(2)
Откуда
(3)
Но это уравнение физически нереализуемо так как к0 (t) = 0 при t < 0 т.е. K0 (jw) содержит физически реализуемую и нереализуемую часть.
Для выделения физически реализуемой части воспользуемся свойством формирующего фильтра.
Используя операцию факторизации суммарную спектральную плотность сигнала и помехи можно представить в виде:
(4)
Используя операцию расщепления, представим выражение для частотной характеристики оптимальной системы в виде реализуемой и нереализуемой части
(5)
где [] + - реализуемая часть; [] - нереализуемая часть.
Определим ![]()

Отбросив нереализуемую часть, можно записать следующее выражение для частотной характеристики оптимальной системы с учетом физической реализуемости:
(6)
Это формула Винера-Колмогорова.
Примеры решений задачПример 1. Рассмотрим задачу фильтрации с воспроизведением. Определить оптимальную передаточную функцию - K0 (p) устойчивой и физически реализуемой системы рис.2).
Дано: Полезный сигнал - X (t) и помеха - Z (t), представляющие собой Гауссовские случайные процессы.
Kи (p) = 1; 
![]() |
|
Решение: Так как полезный сигнал - X (t) и помеха - Z (t) представляют собой Гауссовские случайные процессы, то решение может быть найдено в классе линейных стационарных систем.
Выражение для частотной характеристики оптимальной системы с учетом физической реализуемости имеет вид:

Так как сигнал и помеха некоррелированы и Kи (p) = 1, то выражение имеет вид:

Определим Кф (jw)

Используя операцию расщепления, представим выражение для частотной характеристики оптимальной системы в виде реализуемой и нереализуемой части

При этом
![]()
Значения А и В найдем методом неопределенных коэффициентов

С учетом полученных выражений

При этом передаточная функция представляет аппериодическое звено
![]()
Где

Пример 2. Рассмотрим задачу фильтрации с дифференцированием. Определить оптимальную передаточную функцию - K0 (p) устойчивой и физически реализуемой системы рис.3.
Дано: Полезный сигнал - X (t) и помеха - Z (t), представляющие собой Гауссовские случайные процессы.
Kи (p) = р;
![]() |

|
|
Решение: Так как полезный сигнал - X (t) и помеха - Z (t) представляют собой Гауссовские случайные процессы, то решение может быть найдено в классе линейных стационарных систем.
Выражение для частотной характеристики оптимальной системы с учетом физической реализуемости имеет вид:

Так как сигнал и помеха некоррелированны то выражение имеет вид:

Определим Кф (jw)

где![]()
Используя операцию расщепления, представим выражение для частотной характеристики оптимальной системы в виде реализуемой и нереализуемой части

Где
![]()
Значения А и В найдем методом неопределенных коэффициентов

С учетом полученных выражений

При этом передаточная функция представляет апериодическое звено
![]()
где 
Литература
1. Гуляев В.И., Баженов В.А., Попов С.Л. Прикладные задачи теории нелинейных колебаний механических систем, 1989.
2. Меркин Д.Р. Введение в теорию устойчивости движения, 1985.
3. Светлицкий В.А., Стасенко И.В. Сборник задач по теории колебаний, 1973.
Похожие работы
... момент зависит лишь от того, в какой точке пространства находится в данный момент фазовая точка. Функцию v(x), дающую уравнение оптимальных траекторий в форме (1.35), называют синтезирующей функцией, а задачу нахождения синтезирующей функции ─ задачей синтеза оптимальных управлений. В разобранном примере синтезирующая функция была кусочно-непрерывной (даже кусочно-постоянной). Г л а в а ...
... регулятор на нелинейный элемент. В качестве нелинейного элемента возьмём идеальное реле, статическая характеристика звена изображена на рисунке 23. Рис.23. Идеальное реле Чтобы реализовать данный регулятор в заданной системе автоматического управления, требуется рассчитать значения параметра с. Проанализируем работу системы с нелинейной характеристикой и без неё в Simulink, а затем найдём ...
... и прикладных программ (логическая независимость данных) и возможность изменения физического расположения и организации данных без изменения общей логической структуры данных и структур данных прикладных программистов (физическая независимость). Рис. 1 2. Системы управления базами данных Использование систем управления базами данных (СУБД) позволяет исключить из прикладных программ ...
... дискретного программирование для решения задач проектирование систем обработки данных. - Сформулированы задачи диссертационного исследования. 2. БЛОЧНО-СИММЕТРИЧНЫЕ МОДЕЛИ И МЕТОДЫ ПРОЕКТИРОВАНИЯ СИСТЕМ ОБРАБОТКИ ДАННЫХ В данном разделе рассматриваются общая постановка блочно-симметричной задачи дискретного программирования, её особенности и свойства. Разработан общий подход решения задач ...

















0 комментариев