3. Методы оценки и повышения надежности технологических систем

Ученый Дунин-Барковский дал такое определение термина «технологическая надежность»: «…свойство технологического оборудования и производственно-технических систем, таких, как станок, система литейного, кузнечно-прессового или другого производственно-технического оборудования или автоматических линий, сохранить на за-данном уровне выходные параметры качества производимого изделия в течение требуемого времени». Затем А. С. Проников ввел понятие «надежность технологических процессов». Он пишет, что «больший процент отказов различных машин связан с недостаточной надежностью технологического процесса», что ...«технологический процесс должен быть надежным, т. с. не допускать таких показателей, которые могут влиять на качество выпускаемых изделий». Вопросы оценки надежности технологических процессов и безотказности рассматриваются также в работах П. И. Бобрика, А. Л. Меерова и др., причем только с точки зрения способности технологических систем, процессов и операций обеспечивать (в течение заданного времени) изготовление продукции с показателями качества в соответствии с установленными требованиями.

Но очевидно, что изменение во времени характеристик технологических систем может приводить к изменению не только качества изготовления продукции, но и производительности. Отказы технологических систем в большинстве случаев приводят не к появлению бракованных изделий, а к задержке в выполнении задания, что сказывается на производительности оборудования. Поэтому, характеризуя свойство надежности технологических систем, целесообразно его рассматривать с точки зрения выполнения заданий как по показателям качества, так и по объему изготовляемой продукции.

Таким образом, в технической литературе широкое освещение получили вопросы применения методов теории надежности к анализу свойств технологических систем обеспечивать изготовление продукции в соответствии с требованиями технической документации и в установленном объеме.

Технологическая система - это совокупность средств технологического оснащения, объектов производства и, в общем случае, исполнителей, необходимая и достаточная для выполнения определенных технологических процессов и операций и находящаяся в состоянии готовности к функционированию или в состоянии функционирования в соответствии с требованиями технической документации. Таким образом, можно рассматривать технологическую систему для выполнения одной операции и технологическую систему для выполнения некоторого процесса, состоящего из отдельных операций

В технологическую систему входят элементы, для которых обязательно наличие функциональных связей, обеспечивающих протекание технологических процессов изготовления продукции. Частным случаем таких связей являются кинематические связи между отдельными элементами (например, в системе станок — приспособление — инструмент — деталь).

Надежностью технологической системы будем называть свойство технологической системы выполнять заданные функции, сохраняя показатели качества и ритм выпуска годной продукции в течение требуемых промежутков времени эксплуатации или требуемой наработки. Ритм выпуска — это количество изделий определенного наименования, типоразмера и исполнения, выпускаемых в единицу времени.

Под понятием «надежность технологического процесса» и «надежность технологической операции» понимается надежность технологической системы, обеспечивающей функционирование рассматриваемого процесса или операции в соответствии с требованиями технической документации.

Из определений следует, что технологическую систему можно считать надежной в том случае, если она обеспечивает выполнение задания по показателям качества изготовляемой или изготовленной продукции и по параметрам производительности.

Параметры и свойства технологической системы и ее элементов изменяются в процессе функционирования, т. е. при протекании технологического процесса или операции. Поэтому технологическая система в определенный момент может находиться в работоспособном или неработоспособном состоянии.

При проведении исследований можно оценивать работоспособность системы как отдельно — по ее способности обеспечивать требуемый уровень качества изготовленной продукции и по параметрам производительности, так и по обоим свойствам одновременно с учетом зависимости между ними.

Технологическая система работоспособна по параметрам качества, если обеспечивает изготовление продукции с показателями качества, соответствующими требованиям технической документации, и работоспособна по параметрам производительности, если обеспечивает установленный ритм выпуска.

Отдельные нарушения в технологической системе будем относить к категории повреждений, если они переводят систему из исправного состояния в неисправное, и к отказам, если они переводят систему из работоспособного состояния в неработоспособное.

Таким образом, отказ технологической системы — это событие, заключающееся в потере работоспособности.

Отказы в технологических системах могут быть внезапными и постепенными. К постепенным относятся отказы, вызванные неправильным или дискретным характером изменений в состоянии технологической системы и приводящие к постепенной потере работоспособности (износ направляющих станка, инструмента, приспособлений, температурные деформации, старение материала базовых деталей оборудования и т. п.). Внезапными являются отказы, обусловленные отдельными нарушениями, момент наступления которых практически невозможно прогнозировать (поломка инструмента, ошибка наладчика в настройке оборудования, дефекты в материале или заготовках и т. д.).

В дальнейшем такие постепенные и внезапные отказы будут относиться к категории отказов, обусловленных состоянием системы, т. е. к внутренним отказам. Но технологические системы отдельных операций или процессов могут находиться в состоянии неработоспособности также из-за внешних факторов (нарушение электроснабжения, повреждения помещений, отсутствие материала, заготовок и т. д.). Очевидно, что внешние факторы приводят к снижению надежности по параметрам производительности. К внешним отказам следует относить также простои технологических систем по организационным причинам.

Для того, чтобы решить проблему повышения надежности машин и механизмов, необходимо не просто констатировать факт отказа, но рассматривать каждый случай преждевременного отказа как событие и устанавливать истинную причину нарушения работоспособности. Анализ должен начинаться с установления места отказа. Каждый вид повреждения или отказа имеет различные формы проявления. Все причины отказов могут быть отнесены к одной из следующих трех основных групп:

- ошибки проектирования и изготовления;

- ошибки эксплуатации;

- внешние причины, т.е. причины, непосредственно не зависящие от рассматриваемого изделия или узла.

Типичными дефектами конструирования являются: недостаточная защищенность узлов трения, наличие концентраторов напряжения, неправильный расчет несущей способности, неправильный выбор материалов и др. К наиболее типичным дефектам технологии следует отнести: дефекты из-за неправильного состава материала, дефекты при плавке и изготовлении заготовок, ошибки при механической обработке и др. Основными эксплуатационными причинами отказов и повреждений являются: нарушение условий применения; неправильное техническое обслуживание; наличие перегрузок и непредвиденных нагрузок, обусловленных нарушениями в энергоснабжении, влиянием связанных отказов (вторичные повреждения), влиянием явлений природы, попаданием в механизм посторонних предметов и т.д.

Подобная классификация позволяет только отнести зафиксированный отказ к одной из названных выше причин. Задача заключается в том, чтобы, зная физическую причину разрушения, обеспечить конструирование изделий с установленной долговечностью. Поэтому важно по внешнему виду разрушенной детали сделать правильный предварительный вывод о причинах разрушения.

При решении любой задачи по оценке надежности технологических систем исходят из следующих предпосылок:

1) Надежность технологических систем должна оцениваться только по тем параметрам и показателям качества изготовленной продукции, уровень которых зависит от рассматриваемой операции. Например, при шлифовании вала обработке подлежит только одна поверхность, а остальные не изменяются. По этому оценка надежности такой операции шлифования зависит от условий обеспечения необходимого размера и шероховатости только обрабатываемой поверхности.

Многие показатели эргономичности и технической эстетики однозначно определяются конструкцией изделия и не зависят от надежности технологических операций (например, расположение и число точек смазки в изготавливаемом изделии, обзорность и т. д.). Поэтому при расчете надежности технологических операций такие показатели качества готового изделия не должны учитываться.

2) При расчете надежности технологических систем следует исходить из того, что в конструкторской документации однозначно заданы номинальные значения и показатели качества готового изделия. При оценке же надежности технологических операций (как в процессе технологической подготовки производства, так и в серийном изготовлении) следует только учитывать, насколько процесс изготовления обеспечивает соблюдение установленных требований, и не рассматривать при этом соответствия современному уровню показателей, заложенному в конструкторской документации. Это значит, что технологический процесс может обладать высокой надежностью, хотя полученная при его реализации продукция может относиться ко второй категории качества.

3) При оценке надежности технологических систем в условиях серийного производства следует исходить из заданных в технологической документации технологических маршрутов, режимов и средств технологического оснащения.

4) Отработка технологических операции и процессов по показателям надежности на этапе подготовки производства должна проводиться путем отыскания лучшего технологического решения по экономическим критериям и вероятности выполнения задания по показателям качества изготовленной продукции и параметрам производительности.

Оценка надежности технологических систем сводится к дифференцированной оценке показателей безотказности, долговечности и ремонтопригодности или к вычислению, при необходимости, комплексных показателей, характеризующих одновременно все составные свойства надежности.

Оценка безотказности сводится к определению:

- вероятности того, что рассматриваемый технологический процесс (или операция) обеспечит изготовление продукции в соответствии с требуемыми технической документацией показателями качества в течение заданного интервала времени без вынужденных перерывов при одновременном обеспечении заданного объема производства в единицу времени (ритма запуска);

- средней наработки до отказа;

- параметра потока отказов.

При оценке показателей безотказности не учитываются вынужденные простои оборудования, обусловленные организационными причинами.

Для непрерывных технологических операций за наработку принимается продолжительность работы (ч); для дискретных технологических операций (обработка резанием, штамповка и т. д.) — число обработанных деталей или число обработанных прутков (при изготовлении деталей из пруткового материала).

При оценке безотказности автоматических линий, а также технологических операций, за единицу наработки принимается количество изготовленных деталей после финишной операции.

Операция контроля должна рассматриваться как неотъемлемая часть соответствующих технологических операций.

Отказом технологической системы по показателям качества не следует считать произошедшее после операции обработки отклонение от требований технической документации по одному из показателей качества, выявленное при контрольной операции, в результате чего дефектная деталь или изолирована или направлена на доработку (переработку). При оценке безотказности по параметрам производительности время изготовления дефектной продукции должно учитываться как время, затраченное на устранение отказа.

Для дорогостоящих и трудоемких в изготовлении изделий безотказность должна оцениваться для операции обработки и отдельно для контрольной операции.

Оценка долговечности сводится к определению:

- календарной продолжительности функционирования технологической системы до отказа, капитального ремонта, между ремонтами, до полной замены;

- наработок системы до тех же периодов.

Оценка ремонтопригодности технологической системы сводится:

- к определению показателей, характеризующих продолжительность и стоимость выявления и устранения отказов;

- к установлению времени, потребного для приведения системы в рабочее состояние;

- к устранению показателей, характеризующих трудоемкость и стоимость операций технического обслуживания технологических систем, подналадок, смены инструмента.

Оценка надежности технологических систем проводится путем вычисления показателей надежности па этапах технологической подготовки производства, серийного изготовления, а также после капитального ремонта или модернизации важнейших элементов технологических систем.

Основная цель оценок надежности технологических систем — приведение технологических процессов в такое состояние, при котором обеспечивается изготовление продукции в соответствии с установленными в технической документации параметрами и показателями качества при одновременном обеспечении максимальной производительности и минимуме потерь от брака. В зависимости от этапа проведения оценок могут решаться частные задачи:

- при планировании — установление объемов производства отдельных участков и цехов, определение экономически обоснованных норм точности;

- при технологической подготовке производства — выбор оптимальных технологических процессов (выбор режимов обработки, установление мест контрольных операций в технологическом процессе и планов контроля);

- при серийном производстве — определение соответствия параметров технологической системы установленным требованиям, выявление отрицательных факторов и разработка мероприятий по повышению надежности или точности и стабильности технологических процессов;

- после проведения ремонтов технологических систем — оценка качества ремонта.

Эти же методы могут быть использованы для организации приемо-сдаточных испытаний после ремонта основных элементов технологических систем или после их модернизации.

В основу современного развития работ по теории надежности могут быть положены следующие предпосылки:

- большинство отказов, которые появляются при эксплуатации изделий, можно было предвидеть заранее, поэтому их нельзя считать случайными;

- большинство внезапных отказов объясняются недоработкой и ошибками конструирования, изготовления и сборки, поэтому необходимо не просто констатировать факты появления внезапных отказов, а разрабатывать способы, исключающие их возможность;

- большинство методов промышленного контроля в действительности не позволяет обнаружить дефекты; нужны новые методы контроля, дающие возможность прогнозировать моменты появления отказов с целью своевременного принятия необходимых мер, исключающих внезапный характер отказов;

- надежность технических систем должна оцениваться еще на стадии проектирования;

- управление надежностью должно носить комплексный характер и обеспечиваться на этапах проектирования, изготовления, эксплуатации и ремонта.


Заключение

 

Поскольку уровень надежности в значительной степени определяет развитие техники по основным направлениям, мы должны стремиться достичь высокой надежности технических средств, применяемых в технологическом процессе.

Но невозможно достичь высокой надежности и долговечности с непрогрессивным рабочим процессом и несовершенной схемой или несовершенными механизмами.

Поэтому первым направлением повышения надежности является обеспечение необходимого технического уровня изделий.

Кроме этого, следует применять агрегаты с высокой надежностью и долговечностью, которые обеспечиваются самой природой, т.е. быстроходных агрегатов без механических передач; деталей, работающих при напряжениях ниже пределов выносливости, и др.

Необходимо отметить, что переход на изготовление машин по строго регламентированной технологии заключает в себе резерв повышения надежности.

Этап конструирования системы является очень важным, поскольку на нем закладывается уровень надежности систем безопасности. При конструировании и проектировании следует ориентироваться на простые структуры, имеющие наименьшее количество элементов, поскольку сокращение количества элементов является существенной мерой повышения надежности. Но уменьшение количества элементов не следует противопоставлять резервированию как эффективному способу повышения надежности, но приводящему, на первый взгляд, к завышенному количеству элементов конструкции. Очевидно, что следует принимать компромиссное решение между необходимостью сокращения количества элементов и применением резервирования наименее надежных элементов.


Список литературы

1.  Кубарев А.И. Надежность в машиностроении. – М., Изд-во стандартов, 1977.

2.  Решетов Д.Н., Иванов А.С., Фадеев В.З. Надежность машин. – М., Изд-во стандартов, 1988.

3.  Проников А.С. Основы надежности и долговечности машин. – М., Изд-во стандартов, 1986.


Информация о работе «Надежность в машиностроении. Определение надежности»
Раздел: Промышленность, производство
Количество знаков с пробелами: 32477
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
14349
1
0

... Совпадают с показателями безотказности t c - средний срок службы p- средний ресурс tpγ- гамма-процентный ресурс Точность и достоверность статистической оценки показателей надежности   Как было показано выше, показатели надежности представляют собой числовые характеристики случайных величин или их комбинации. Результат эксперимента над случайными величинами всегда случаен. Если ...

Скачать
35597
0
0

... на сборке вы­зывают существенные отклонения от плоскостности, цилиндрично­сти, конусности, перпендикулярности и пр. Поэтому следует принимать в рас­чет реальные формы ба­зовых поверхностей. ОБЕСПЕЧЕНИЕ КАЧЕСТВА МАШИН НА ОПЕРАЦИЯХ СБОРКИ. Сборка является заключительным этапом производства. Но этот этап принци­пи­ально отличается от других этапов тем, что именно в нем ...

Скачать
18999
0
0

... в том, чтобы увидеть, как системы функционируют в системе во взаимодействии с другими частями. Понятие о надежности работы человека при взаимодействии техническими системами. Технические системы становятся взаимосвязанными только благодаря наличию такого основного звена, как человек. Согласно данным, примерно 20-30% отказов прямо или косвенно связаны с ошибками человека; 10-15% всех отказов ...

Скачать
72154
0
0

... отказов по последствиям необходим анализ критериев, причин и последствий отказов и построение логической и функциональной связи между отказами. Классификация отказов по последствиям необходима при нормировании надежности (в частности, для обоснованного выбора номенклатуры и численных значений нормируемых показателей надежности), а также при установлении гарантийных обязательств. 11.9 К ...

0 комментариев


Наверх