2.2 Проблемы, возникающие при применении предконденсатов термореактивных смол и их решение
2.2.1 Ухудшение механических свойств материалов
Широкое применение предконденсатов термореактивных смол обусловлено высоким эффектом несминаемости и малоусадочности, достигаемым после аппретирования. Однако, с увеличением количества препарата наносимого на ткань, вследствие фиксации структуры волокон и повышении ее жесткости, происходит заметное ухудшение механических свойств материалов – понижается их разрывная нагрузка и растяжимость, устойчивость к истиранию, многократному растяжению и изгибу. При нанесении 7-8 % синтетических смол от массы сухой ткани (отделка не требующая глажения) эффект несминаемости, оцениваемый по сумме углов раскрытия, составляет 220-250° против 70-100° до обработки ткани, а потери прочности на разрыв хлопчатобумажных и льняных тканей 30-40 %, при уменьшении содержания смолы на ткани до 5 % (легкое глажение) - 200-220°, а потери прочности на разрыв 20-35 %. При содержании до 4 % (прочность на разрыв 15-30 %) ткань уже не приобретает эффекта «стирай-носи», а становится только несминаемой и малоусадочной.
Устранить этот недостаток можно путем введения в отделочные композиции мягчителей на основе термопластичных полимеров, силиконов или ПАВ, что способствуют образованию с предконденсатами смол внутри волокна менее жестких и напряженных эластических структур. В результате, уменьшается жесткость обработанной ткани и улучшается рад других показателей качества: устойчивость к истиранию, разрывная прочность, добротность, наполненность тканей. В многочисленных работах [18, 19, 20] предлагается вводить в отделочный раствор этиленовые или силиконовые полимеры. Из отечественных, применяются препараты на основе полиэтиленовой эмульсии и ГКЖ-94, а из зарубежных – мягчители, разработанные фирмами ВАSF, Неnkel, DOW Соrning (8803 Softener), Ivax. Силиконы в качестве мягчителей позволяют не только снизить потери механической прочности в 2-2,5 раза, но и придать тканям эффект водо- и грязеотталкивания, усилить эффект малоусадочности и несминаемости на 25-35 градусов, приданный смолами.
Устранить механические потери прочности можно усовершенствованием процессов сушки и условий реакций смолообразования. В работах [21 – 26] предлагается использовать энергию электромагнитных колебаний высокой частоты для замены традиционных видов подвода тепла, что позволяет совместить операции сушки и термофиксации пропитанных отделочным раствором тканей, сократить продолжительность процесса до 4,5 с, повысить качественные показатели готовых тканей по углу раскрытия складки на 5%, а по снижению прочностных характеристик на 10%.
Исследованиями ряда авторов [27] было установлено, что при переходе от традиционных фиксирующих средств (горячий воздух, перегретый водяной пар) к водно-органической фактор эффективности отделки, характеризующийся как отношение изменения суммарных углов раскрытия складки к снижению разрывной нагрузки ткани увеличивается в 1,5-2 раза, что объясняеться изменением характера «сшивки» полимеров. При фиксации отделочных препаратов в среде перегретых паров азеотропа в сравнении с горячим воздухом количество образующихся поперечных связей снижается, а их длина возрастает, упругие свойства материала при этом увеличиваются.
Существенно улучшить физико-механические показатели аппретированной ткани позволяет предварительная плазменная обработка ее перед процессом малосминаемой отделки. По мнению ряда исследователей [28, 29], в некоторых случаях увеличение разрывных характеристик аппретированных тканей, подвергшихся плазменной обработке на 5-70%, по сравнению с исходными, неотделанными, объясняется более высокой адгезией волокон друг к другу.
2.2.2 Выделение формальдегида
Формальдегид – бесцветный газ с резким раздражающим запахом. Тпл=118°С, Ткип=19,2°С, хорошо растворим в воде, спиртах [30]. В природе он образуется в атмосфере под действием ультрафиолетового излучения и из атмосферы усваивается живыми организмами. В промышленности формальдегид получают окислением метилового спирта или метана кислородом. Формальдегид образуется при неполном сгорании органических веществ (бензина, нефти, угля), в том числе содержится в сигаретном дыме. Формальдегид токсичен, действует на организм как: раздражающий газ, вызывает дегенеративные процессы в паренхиматозных органах, сенсибилизирует кожу [31]. Есть указания о сильном действии формальдегида на центральную нервную систему. Свободный формальдегид инактивирует ряд ферментов в органах и тканях, угнетает синтез нуклеиновых кислот, нарушает обмен витамина С, обладает мутагенными свойствами.
На текстильном предприятии опасность воздействия паров формальдегида при работе со смолами возникает на следующих переходах: в процессе приготовления отделочных составов и их нанесения, при проведении термообработки и при хранении обработанных полотен.
Существуют международные и национальные нормы содержания формальдегида в воздухе, в рабочих помещениях, в атмосфере, в сточных водах и в текстильных материалах. Нормы эти ужесточаются с каждым годом и различаются в разных странах. Согласно российскому стандарту ГОСТ Р 50729-95 «Материалы текстильные. Предельно допустимые концентрации свободного формальдегида», установлены допустимые концентрации свободного формальдегида для материалов бытового назначения (ткани и изделия льняные, полульняные, хлопчатобумажные и смешанные), численные значения которых представлены в табл.1 [32].
Таблица 1 - Допустимые концентрации свободного формальдегида (Ф) в материалах бытового назначения
Группа I содержание Ф до 1000 мкг/г | Группа II содержание Ф до 300 мкг/г | Группа III содержание Ф до 75 мкг/г | Группа IV без содержания Ф |
текстильные материалы (МТ) для изделий пальтово-костюмного ассортимента | МТ для изделий платьево-блузочного ассортимента и сорочек верхних | МТ для нательного и постельного белья, в том числе для детей всех возрастных групп, кроме детей в возрасте до 1 года | МТ для детей в возрасте до 1 года |
Большинство традиционных обработок смолосодержащими препаратами не удовлетворяют этим условиям. Отщепление формальдегида, в большей или в меньшей степени, происходит за счет гидролитического разрушения смол в зависимости от типа предконденсата и катализатора.
С учетом этого, следует выделить три направления решения проблемы, связанной с выделением свободного формальдегида при аппретировании и хранении тканей. Первое направление связало с обеспечением оптимальных условий конденсации с образованием минимального числа свободных метильных групп и эфирных мостиков, при образовании которых может выделяться формальдегид, а также свободного не прореагировавшего формальдегида. Например, использование эффективного катализатора, ускоряющего реакцию взаимодействия отделочного препарата с целлюлозой, позволяет снизить концентрацию предконденсата смолы на 20-40 % [33].
Введение в состав пропиточного раствора компонентов, способных связывать формальдегид в процессе выделения в два и более раз снижает загазованность парами формальдегида рабочей зоны цехов и уменьшает его содержание на ткани в процессе хранения. Действие применяемых для этих целей ингибиторов, таких как бисульфит натрия, мочевина, дициандиамид, дитионит натрия [34, 35] зависит от вида использованного при отделке катализатора.
Второе направление связано со снижением на 30-50 % концентрации смолообразующих компонентов отделочных композиций за счет их совместного применения с такими препаратами как гидроксиламин [36], силиконовая эмульсия [37, 38] и др. Эти химические вещества в определенном соотношении позволяют восполнить недостаток предконденсата при несминаемой отделке ткани, но не способны полностью его заменить.
Одним из наиболее радикальных способов перехода к заключительной отделке с малым содержанием формальдегида является синтез новых отделочных препаратов. В первую очередь к ним можно отнести препараты на основе эфиров производных этиленмочевины. Эффективными отечественными препаратами здесь являются СтабиТекс, Рукон, ФЛИР, карбамол МТ, карбамол МТ-2, карбамол 2 М, отексид Д-2 [39, 40]. К их зарубежным аналогам можно отнести: Fixapret ЕСО и NF (ВАSF), Protopez 6036 (Вауеr-Таnаtex), Reactisol DP-4 (Glotex Chemicals), Aerotex NFC (Freedom Textile Chemicals) [41]. В результате исследований [40] было установлено, что низкоформальдегидные отделочные препараты, по сравнению с традиционными, требуют более высоких температур фиксации для достижения нормируемых показателей отделки. Тем не менее, в большинстве случаев применение данных препаратов способствует значительному (в 2-10 раз) снижению содержания формальдегида на отделанной ткани.
Применение эффективного катализатора обеспечивает снижение температуры фиксации отделочных препаратов и высокое качество отделки тканей с низким содержанием на ней свободного формальдегида (таблица 2).
Таблица 2 Сравнительные технические результаты малосминаемой отделки вискозных штапельных тканей.
Наименование отделочного препарата | Наименование катализатора | Параметры фиксации | Суммарный угол раскрытия складки, град | Содержание свободного формальдегида на ткани, мкг/г | |
температура, °С | время, мин | ||||
Карбамол ЦЭМ | Хлорид аммония | 150 | 4,0 | 248 | 2184 |
Карбамол 2М | Хлорид аммония | 160 | 3,5 | 246 | 773 |
Персульфат аммония | 150 | 4,0 | 272 | 199 | |
Карбамол ГЛ | Хлорид аммония | 150 | 4,0 | 244 | 1173 |
Отексид Д2 | Хлорид аммония | 160 | 3,5 | 237 | 102 |
Персульфат аммония | 150 | 4,0 | 269 | 99 | |
Карбамол МТ | Хлорид аммония | 160 | 4,0 | 227 | 261 |
Персульфат аммония | 140 | 4,0 | 241 | 90 | |
Карбамол МТ2 | Хлорид аммония | 160 | 4,0 | 225 | 760 |
Так же следует отметить, что высокую эффективность в качестве бесформальдегидных поперечно-сшивающих препаратов проявили себя такие вещества как глиоксаль; продукты взаимодействия глиоксаля с мочевиной, глиоксаля с ацетамидом [42, 43, 44], глиоксаля и диэтиленгликоля [45]; поликарбоновые кислоты с 3 и более карбоксильными группами; ненасыщенные дикарбоновые малеиновая и итаконовая кислоты и их смеси; 1,2,3-пропантрикарбоксильная с лимонной кислотой, а также реакционноспособные силиконы, содержащие алкокси- и амино - группы [46]. Основным недостатком глиоксаля и карбоновых кислот, используемых в качестве препаратов для малосминаемой отделки является то, что применение их для отделки окрашенных прямыми, активными, кубовыми и дисперсными красителями тканей, приводит к изменению цвета и снижению прочности окраски.
ЗАКЛЮЧЕНИЕ
Мы живем в век химии. Мы контактируем с продукцией химической промышленности постоянно, не зависимо от того, что мы делаем: принимаем ли пищу (всевозможные пищевые добавки), читаем ли книгу (типографские краски), принимаем ли душ (гели для душа, шампуни, бальзамы-ополаскиватели – чего только не придумали для этой простой процедуры химики), но единственное, что окружает нас 24 часа в сутки – это ткани.
Мы – дети прогресса, избалованные дети. Нам недостаточно просто иметь одежду, она, по нашему мнению, должна облегчать нам жизнь. Даже если не уходить в дебри требований для спецодежды (олеофобности, негорючести и т.д.), в нашей повседневной жизни мы хотим чтобы одежда не мялась и не теряла форму при носке, била стойка к истиранию, легко гладилась после стирки, а в идеале так и вовсе не требовала глажения. Все эти наши требования текстильная химия выполняет с помощью аппретов.
Наиболее часто в качестве аппретов используют смолы на основе формальдегида. Так например, предконденсат мочевиноформальдегидной смолы используют для придания изделиям из целлюлозных волокон свойств наполненности, малоусадочности, малосминаемости, формоустойчивости. С его помощью достигается устойчивость эффектов тиснения, лощения, серебристо-шелковистой отделки. Но формальдегид токсичен, и здесь очень важен контроль соблюдения международных и национальных норм содержания формальдегида в воздухе, рабочих помещениях, в атмосфере, в сточных водах и в текстильных материалах.
СПИСОК ЛИТЕРАТУРЫ
1. Теория и практика подготовки текстильных материалов /Кричевский Г.Е., Никитков В.А. – М.: Легпромбытиздат, 1989. – 208 с.
2. Диффузия и сорбция в процессах крашения и печатания /Кричевский Г.Е. – М.: Легкая индустрия. 1981, 207 с.
3. Фотохимические превращения красителей и светостабилизация окрашенных материалов /Кричевский Г.Е. – М.: Химия, 1986. – 248 с.
4. Советский энциклопедический словарь /Прохоров А.М. и др. – М.: Советская энциклопедия, 1984. – 1600 с.
5. Химическая технология текстильных материалов /Кричевский Г.Е., Корчагин М.В., Сепахов А.В. – М.: Легпромбытиздат, 1985. – 640 с.
6. Свойства хлопчатобумажных тканей с отделками термореактивными смолами /Иванникова И.М., Крючкова О.В., Легчилина Л.М. Текстильная промышленность, 1987. №12, с. 62-64.
7. Физико-химические основы отделочного производства текстильной промышленности /Беленький Л.И.– М.: Легпромбытиздат, 1979. –312 с.
8. Химическая технология текстильных материалов /Феликс В. – М.: Легкая индустрия, 1965. – 487 с.
9. Современные способы заключительной отделки тканей из целлюлозных волокон /Мельников Б.Н., Захарова Т.Д. – М.: Легкая индустрия, 1975. – 208 с.
10. Придание свойств несминаемости хлопчатобумажным тканям в сухом и мокром состоянии /Широкова М.К., Виноградова Г.М, Зверевская К.И. Известия вузов. Технология текстильной промышленности, 1976. №4, с. 77-81.
11. Износостойкость и формоустойчивость одежных тканей с малосминаемой и малоусадочной отделкой /Семак Б.Д. – М.: Легкая индустрия, 1979. – 152 с.
12. О свойствах тканей, обработанных смолами /Кокошинская В.М., Яковлева А.О. Текстильная промышленность, 1974. №9, с. 67-69
13. Отделка тканей из вискозных штапельных волокон /Шейко В.С., Шолош М.Л. Текстильная промышленность, 1976. №6, с. 83-84
14. Несминаемая и малоусадочная отделка тканей /Эфрос Р.Л., Куликова Г.И. Текстильная промышленность, 1976. №1, с. 68-70
15. Способ малоусадочной отделки шерстяных тканей. Патент №62-332688 Япония МКИ D 06 M 15/00, D 06 M 10/00 /Тавара Мицуру, Кодэру Ясуо, Осака фу
16. Обработка шерстяных материалов в низкотемпературной плазме /Афанасьев В.К., Александрова Т.М., Кудрявцева Т.Н., Серебренникова М.Н., Горберг Б.Л. Текстильная промышленность, 1992. №5, с. 26-27
17. Новые кремнийорганические соединения для водокислото-отталкивающей отделки тканей из смеси целлюлозных и полиэфирных волокон /Журавлева И.В., Калимова Т.А., Балашова Т.Д., Копылов В.М., Школьник О.В. Известия вузов. Технология текстильной промышленности, 1994. №2, с. 51-53.
18. Износостойкость тканей с отделкой силиконами /Семак Б.Д.– М.: Легкая индустрия, 1977. – 192 с.
19. Применение кремнийорганических препаратов в текстильной промышленности /Нессонова Г.Д., Гриневич К.П. – М.: Легкая индустрия, 1972. – 52 с.
20. Кремнийорганические соединения в текстильной и легкой промышленности /Орлов Н.Ф. – М.: Легкая индустрия, 1966. – 139 с.
21. Новая технология малосминаемой отделки текстильных материалов /Шубина Е.В., Никифоров А.Л., Мельников Б.Н. Известия вузов. Технология текстильной промышленности, 2003. №1, с. 72-76.
22. Способ малосминаемой отделки целлюлозосодержащих тканей. Пат. 2235156 Россия. МПК7 D 06 M 15/39. Никифоров А.Л., Шубина Е.В., Мельников Б.Н.
23. Использование энергии высоких частот в процессах малосминаемой отделки хлопчатобумажных тканей /Никифоров А.Л., Циркина О.Г., Грушина Г.Н., Кузнецова Т.Н. Известия вузов. Технология текстильной промышленности, 1995. №1, с. 57-59.
24. Использование высокочастотного нагрева для интенсификации процессов малосминаемой отделки хлопчатобумажных тканей /Никифоров А.Л., Шубина Е.В., Мельников Б.Н. Известия вузов. Технология текстильной промышленности, 2001. №6, с. 41-43.
25. Взаимосвязь диэлектрических характеристик и качественных показателей текстильных материалов при малосминаемой отделке в поле токов высокой частоты / Шубина Е.В., Никифоров А.Л., Циркина О.Г. Известия вузов. Технология текстильной промышленности, 2003. №2, с. 55-57.
26. Магнитная активация в технологии заключительной отделки тканей на стадии подсушки /Кузнецова Т.Н., Грушина Г.Н., Демидов С.С. Совершенствование технологии и оборудования х/б производства. Ивановский госконцерн по разработке и производству продукции текстильной промышленности «ИВТЕКС». – М. 1991, с. 35-39.
27. Особенности процесса малосминаемой отделки хлопчатобумажных тканей в водно-органической паровой среде /Одинцова О.И., Козлова О.В., Смирнова О.К., Мельников Б.Н. Известия вузов. Технология текстильной промышленности, 1992. №4, с. 49-51.
28. Изучение прочностных и адгезионных свойств плазмобработанных льняных материалов, подвергшихся малосминаемой отделке /Квач Н.М., Садова С.Ф. Деп. в ЦНИИТЭИлегпром 9.04.96, №3676 – лп96 – 13с.
29. Использование низкотемпературной плазмы для совершенствования малосминаемой отделки льняных материалов / Н.М., Садова С.Ф., Наумов Е.В, Кечекьян А.С., Королев В.А. Текстильная промышленность, 1995. №3, с. 24-27
30. Энциклопедия полимеров. Т 2, Т 3 /Кабанов В.А. и др. – М.: Советская энциклопедия, 1974.
31. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Т 1 /Лазарева Н.В., Левина Э.Н. – Л.: Химия, 1976.
32. Нормы и методики содержания формальдегида в текстильных изделиях/ Артемов А.В., Гаврилова М.Г., Севостьянова Ю.Я., Фролов С.В. http://www.textileclub.ru/viewarticle191-3.html
33. Отделка хлопчатобумажных тканей в присутствии нового катализатора НКК /Меликузиев Ш.М., Рузметова Х.К. Текстильная промышленность, 1991. №11-12, с. 47
34. Состав для малоусадочной и малосминаемой отделки целлюлозосодержащих текстильных материалов. Пат. 1838486 СССР, МКМ5 D 06 M 15/423, D 06 M 101/106. Похилько Л.А., Бизюк Л.Л., Тарасевич Н.В., Кузнецова А.И.
35. Способ малосминаемой и малоусадочной отделки целлюлозо-содержащих текстильных материалов. Пат. 2037593 Россия, МКМ5 D 06 M 15/423. Похилько Л.А., Кузнецова А.И.
36. Состав для отделки хлопчатобумажных тканей. Пат. 2028401 Россия, МКМ6 D 06 M 15/45. Дергачева Л.А., Альморо Клаудио Гранда, Смирнова Л.Н., Платонова Н.В., Ковальчук Т.И.
37. Оптимизация технологии малосминаемой отделки тканей при использовании композиций диметололэтиленмочевины с кремнийорганическими соединениями /Сарибекова Ю.Г., Слезко Г.Ф., Кулигина М.С. Разработка ресурсосберегающих и малоотходных технологий отделки текстильных материалов. Херсонский индустриальный институт. – М., 1992, с. 18-23
38. Исследование влияния катализаторов на малосминаемость тканей, обработанных диметилолэтиленмочевиной с добавками кремнийор-ганических соединений / Сарибекова Ю.Г., Слезко Г.Ф., Кулигина М.С. Разработка ресурсосберегающих и малоотходных технологий отделки текстильных материалов. Херсонский индустриальный институт. – М., 1992, с. 24-29
39. Малотоксичные препараты для заключительной отделки целлю-лозосодержащих тканей /Месник О.М., Полушина А.А., Кокшаров С.А., Морыганов А.П. Текстильная химия, 1993. №2, с. 26-30
40. Применение низкоформальдегидных отделочных препаратов в заключительной отделке вискозных штапельных тканей /Козлова О.В., Ярынина Т.В., Смирнова О.К. Известия вузов. Технология текстильной промышленности, 1995. №6, с. 45-47.
41. Новое поколение препаратов для специальных отделок /Петрова О.В., Бондарева Е.Ю. ЛегПром Бизнес. Директор, 2004. №4-5, с.15
42. Безформальдегидная заключительная отделка сорочечных хлопчатобумажных тканей /Трифонов А.И., Виноградова Г.И., Мельников Б.Н. Известия вузов. Технология текстильной промышленности, 1991. №2, с. 54-57.
43. Оптимизация безформальдегидного состава для заключительной отделки хлопчатобумажных сорочечных тканей /Трифонов А.И., Виноградова Г.И., Мартьянова Р.Ф., Мельников Б.Н. Известия вузов. Технология текстильной промышленности, 1992. №2, с. 51-54.
44. Безформальдегидные аппреты на основе глиоксаля для заключительной отделки тканей из целлюлозных волокон / Трифонов А.И., Виноградова Г.И., Мартьянова Р.Ф., Мельников Б.Н. Известия вузов. Химия и химическая технология, 1993.-36. №5, с. 125-128.
45. Применение глиоксаля в качестве безформальдегидного препарата для малосминаемой отделки целлюлозных текстильных материалов / Трифонов А.И., Виноградова Г.И., Мельников Б.Н. Оздоровление воздушной среды на предприятиях текстильной промышленности. Иваново, 1989, с. 88-92.
46. Малосминаемая безформальдегидная отделка тканей из целлюлозных волокон /Журавлева Н.В., Калимова Т.А., Балашова Т.Д., Школьник О.В., Копылов В.М. Известия вузов. Технология текстильной промышленности, 1997. №1, с. 58-60.
... , радиацией. В реальных условиях имеет место передача тепла комбинированным путем, но в зависимости от типа сушилки преобладает какой-либо один способ. Для сушки текстильных материалов применяется различное оборудование, поэтому классификация сушилок довольно многозначна. Их можно подразделить: по способам передачи тепла—на контактные (барабанные), конвективные, радиационные и комбинированные; ...
... повреждений тканей определяются природой их волокнистого состава, особенностями воздействующих факторов и условиями хранения. Предлагается учитывать пять групп факторов, воздействующих на ткани и другие текстильные товары: товарные, торговые, производственные, транспортные и природно-климатические. По времени их действия они делятся на постоянные и временные. Факторы, вызывающие изменения в ...
... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...
... материалов такого типа характерны способность к абсорбции энергии, неограниченный срок службы и хорошая рециркулируемость. Специалистами Центрального научно-исследовательского института пленок и искусственных кож разработан комплект материалов для изготовления рабочей и армейской обуви, использование которых обеспечивает ее высокую долговечность, механический и гигиенический комфорт при работе в ...
0 комментариев