5.2 Расчет быстроходного вала редуктора
Схема усилий, действующих на быстроходный вал представлена на рис.2.
Назначаем материал вала. Принимаем сталь 40Х, для которой [2, табл.8.4] σв=730Н/мм2; Н/мм2; Н/мм2; Н/мм2.
Определяем диаметр выходного конца вала под полумуфтой из расчёта на чистое кручение [2,c.161]:
где [τк]=(20…25)Мпа
Принимаем [τк]=20Мпа.
; мм.
Принимаем окончательно с учетом стандартного ряда размеров Rа10 (ГОСТ6636-69): мм.
Намечаем приближенную конструкцию быстроходного вала вала редуктора (рис.5), увеличивая диаметр ступеней вала на 5…6мм, под уплотнение допускается на 2…4мм и под буртик на 10мм.
мм;
мм – диаметр под уплотнение;
мм – диаметр под подшипник;
мм – диаметр под ступицу шестерни;
мм – диаметр буртика;
b1=15мм.
Учитывая, что осевых нагрузок на валу нет предварительно назначаем подшипники шариковые радиальные однорядные особо легкой серии по мм подшипник №100, у которого Dп=26мм; Вп=8мм [4,табл.К27].
Выбираем конструктивно остальные размеры:
W=14мм; lм=16мм; l1=25мм; l=60мм.
Определим размеры для расчетов:
l/2=30мм; с=W/2+ l1+ lм/2=40мм – расстояние от оси полумуфты до оси подшипника.
Проводим расчет быстроходного вала на изгиб с кручением.
Рис.5 Приближенная конструкция быстроходного вала
Заменяем вал балкой на опорах в местах подшипников (см. рис.6). Назначаем характерные точки 1,2, 3 и 4.
Определяем реакции в подшипниках в вертикальной плоскости.
ΣМ2y=0; RАy·0,06-Fr1·0,03=0 RАy= 21,2·0,03/ 0,06; RАy= RВy=10,6Н.
Определяем изгибающие моменты в характерных точках:
М1у=0;
М2у=0;
М3у= RАy·0,03;
М3у =0,5Нм2;
М3у=0;
Строим эпюру изгибающих моментов Му, Нм2 (рис.6).
Определяем реакции в подшипниках в горизонтальной плоскости.
ΣМ4x=0; Fm1·0,1- RАx·0,06+ Ft1·0,03=0;
RАx= (64,5·0,1+ 58,3·0,03)/ 0,06;
RАx=137Н;
Рис.6 Эпюры изгибающих моментов быстроходного вала
ΣМ2x=0; Fm1·0,02- Ft1·0,03+ RВx·0,06=0;
RВx= (58,3·0,03- 64,5·0,02)/ 0,06;
RВx=7,7Н
Определяем изгибающие моменты:
М1х=0;
М2= -Fm1·0,04
М2х=-64,5·0,04;
М2х=-2,6Нм;
М3хсправа=-Fm1·0,1+RВх ·0,03;
М3хсправа==-64,5·0,1+7,7 ·0,03;
М3хсправа=-6,2Нм;
М3х=- RАх ·0,03;
М3х=- 137 ·0,03;
М3х=- 4,1;
М4х=0;
Строим эпюру изгибающих моментов Мх. Крутящий момент
Т1-1= Т2-2= Т3-3= T1=0,85Нм;
T4-4=0.
Определяем суммарные радиальные реакции [4,рис 8.2]:
; ;
; Н;
; Н.
Определяем результирующий изгибающий момент в наиболее опасном сечении (в точке 3) [4,рис 8.2]:
; ; Нм2.
Эквивалентный момент:
; ; Нм2.
... 15-17 лет. 2.Диагностика по выявлению уровней и слабых сторон в физической подготовленности девочек 15-17 лет с использованием технологий индивидуального подхода позволила разработать индивидуальные педагогические программы по коррекции отстающих физических качеств. 3. Эффективность коррекционных программ была оценена по данным, отмеченным в экспериментальной группе: - в увеличении суммы ...
... валиками (индекс М), шаг : д)конструктивные особенности: на валу установлена одна звёздочка для тяговой пластинчатой цепи; приводной вал конвейера соединён с выходным валом редуктора посредством горизонтально расположенной цепной передачи; е) расчётный срок службы; ж) кратковременная перегрузка ; з) номер типового режима нагружения - 2. 10.1 Предварительная разработка конструкции ...
... вращения и угловых скоростей валов привода. n=1450 мин-1; c-1, Вал II: мин-1; c-1, Вал III: мин-1; c-1, Вал IV: мин-1; c-1. Определение вращающих моментов на валах привода. Н∙м; Вал II: Н∙м; Вал III: Н∙м; Вал IV: Н∙м. 2 ВЫБОР МАТЕРИАЛА И ОПРЕДЕЛЕНИЕ ДОПУСКАЕМЫХ НАПРЯЖЕНИЙ Выбираю материалы со средними механическими ...
... перекрест рук» А.Р. Лурия в общей структуре латеральных профилей мужчин и женщин в норме. Обоснованы принципы подхода к проблеме связи вариантов латеральных профилей с индивидуальными различиями с позиций дифференциальной психофизиологии, приведены нейрофизиологические и нейрохимические объяснения выявленным связям между индивидуальными профилями латеральности и некоторыми особенностями реализации ...
0 комментариев