1 Теоретические основы теплообменного процесса. Выбор конструкции аппарата

Тепловые процессы — технологические процессы, которые протекают со скоростью, обусловленной законами теплопередачи.

Теплообменные аппараты — аппараты, предназначенные для проведения тепловых процессов.

Теплоносители — тела (среды), которые принимают участие в теплообмене.

Существует три способа переноса тепла: теплопроводность, конвективный теплообмен и тепловое излучение.

Теплопроводность – явление переноса тепловой энергии непосредственным контактом между частичками тела.

Конвективный теплообмен – процесс распространения в следствии движения жидкости или газа.

Естественная (свободная) конвекция обусловлена разностью плотности в разных точках объема теплоносителя, который возникает вследствие разности температур в этих точках.

Вынужденная конвекция обусловлена принудительным движением всего объема теплоносителя.

Тепловое излучение – процесс передачи тепла от одного тела к другому, распространением электромагнитных волн в пространстве между этими телами.

Теплоотдача — процесс переноса тепла от стенки до теплоносителя или в обратном направлении.

Теплопередача — процесс передачи тепла от более нагретого менее нагретому теплоносителю через разделяющую их поверхность или твердую стенку.

При проектировании теплообменных аппаратов тепловой расчет сводится к определению необходимой поверхности теплообмена F, (м2), по основному уравнению теплопередачи:

, (1.1)

где

Q – тепловая нагрузка теплообменника, (Вт);

Dtср – средняя разность температур, (0С);

К – коэффициент теплопередачи, .

Коэффициент теплопередачи показывает, какое количество теплоты передается от горячего теплоносителя к холодному за 1 с через 1 м2 стенки при разности между теплоносителями, равной 1 град.

Тепловую нагрузку теплообменника определяют из уравнения теплового баланса. Если пренебречь потерями тепла к окружающей среде, которые обычно не превышают 5%, то уравнение теплового баланса будет иметь вид:

Q=Q1=Q2, (1.2)

где

Q1 и Q2 – количество тепла, которое отдал горячий теплоноситель и которое передано холодному теплоносителю соответственно, (Вт).

Во время теплообмена между теплоносителями уменьшается энтальпия (теплосодержание) горячего теплоносителя и увеличивается энтальпия холодного теплоносителя. Уравнение теплового баланса (1.2) в развернутом виде:

Q=G1(i1п-i1к) =G2(i-i2п), (1.3)

где

G1 и G2 – затрата горячего и холодного теплоносителя соответственно, ;

i1п, i – начальная и конечная энтальпии горячего теплоносителя, ;

i2п, i – начальная и конечная энтальпии холодного теплоносителя, .

Если во время теплообмена не изменяется агрегатное состояние теплоносителей, энтальпии последних приравнивают произведению теплоемкости на температуру и тогда уравнение теплового баланса (1.3) будет иметь вид:

Q=G1c1(t1п-t) =G2c2(t-t2п), (1.4)

где

c1 и с2 – средние удельные теплоемкости горячего и холодного теплоносителей соответственно, ;

t1п, t – температуры горячего теплоносителя на входе в аппарат и на выходе из него, (0С);

 t, t2п – температуры холодного теплоносителя на выходе из аппарата и на входе в него, (0С).

Из уравнения (1.4) можно найти затраты горячего или холодного теплоносителей при известных значениях других параметров. В случае использования в качестве горячего теплоносителя насыщенного водяного пара величин i1п, , и i, , в уравнении (1.3) будут соответственно энтальпиями пара, который поступает, и конденсата, который выходит из теплообменника. Уравнение теплового баланса, предполагая, что отдача тепла при охлаждении пара к температуре конденсации и при охлаждении конденсата незначительная:

Q=Gгр(i1п-i) =G2c2(t-t2п), (1.5)

где

где Gгр – затрата греющего пара, .

Предполагая, что отдача тепла при охлаждении пара к температуре конденсации и при охлаждении конденсата незначительная, уравнение теплового баланса (1.5) можно записать в виде:

Q=Gгрr=G2c2(t-t2п), (1.6)

где

r – удельная теплота конденсации, .

По уравнениям (1.5) и (1.6) определяют затраты водяного пара. Если греющий пар является влажным, то теплоту конденсации умножаем на степень сухости водного пара. Если имеем тепловые потери в окружающую среду, то величину тепловой нагрузки необходимо умножить на коэффициент, который учитывает тепловые потери. Энтальпию и удельную теплоту конденсации греющего пара определяют по справочникам [6,10]. Коэффициент теплопередачи К, , для плоской теплообменной поверхности:

, (1.7)

где

a1, a2 – коэффициенты теплоотдачи соответственно для горячего и холодного теплоносителя, .

Коэффициент теплоотдачи показывает, какое количество теплоты передается от теплоносителя к 1 м2 поверхности стенки (или от стенки поверхностью 1 м2 к теплоносителю) в единицу времени при разности температур между теплоносителем и стенкой 1 град.

dст – толщина теплообменной стенки, (м);

lст – коэффициент теплопроводности материала стенки,

Коэффициент теплопроводности показывает, какое количество теплоты проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на один градус на единицу длины нормали к изотермической поверхности.

Коэффициенты теплоотдачи определяют из критерия Нуссельта, а последний находят по разным критериальным уравнениям в зависимости от конкретных условий теплообмена. В случае развитого турбулентного движения жидкостей в трубах и каналах (Re>10000):

Nu= (1.8)

Для критериев Nu, Re и Pr за определяющую температуру принимается средняя температура жидкости, а для критерия Prст — температура стенки. По линейным размерам в критериях Nu и Re берется внутренний диаметр трубы или эквивалентный диаметр канала. При ламинарном движении (Re<2300):

Nu= (1.9)

Для воздушного теплоносителя формулы (1.8) и (1.9) соответственно:

Nu=0,018Re0,8; (1.10)

Nu=0,13Re0,33Gr0,1. (1.11)

Для случая движения теплоносителя в межтрубном пространстве кожухотрубных теплообменников:

Nu=С(dеRe)0,6Pr0,33, (1.12)

где

С – коэффициент, который учитывает присутствие сегментных перегородок в межтрубном пространстве;

dе – эквивалентный диаметр межтрубного пространства, (м).

, (1.13)

где

f – плоскость поперечного сечения потока, (м2);

П – периметр сечения потока, (м);

D – внутренний диаметр кожуха, (м);

d – внешний диаметр трубы, (м);

z – количество ходов по трубному пространству;

n – количество труб в одном ходе.

При поперечном обтекании пучка труб (угол атаки 90о), шахматном и коридорном расположении труб соответственно:

Nu= (1.14)

Nu= (1.15)

Среднюю разность температур , (0С), в случае прямотечения и противотечения определяют как среднелогарифмическую разность:

, (1.16)

где

Dtб, Dtм – большая и меньшая разности температур между теплоносителями на концах теплообменника, (0С).

Если <2, то среднелогарифмическую разность можно заменить без заметной погрешности среднеарифметической разностью:

. (1.17)

Для аппаратов с перекрестным и смешанным течением теплоносителей средняя разность температур находится путем умножения значения среднелогарифмического температурного напора достигаемого при противотечейной схеме движения теплоносителей на поправочный коэффициент, который определяется по справочникам [4-6].


Информация о работе «Расчет и проектирование вертикального кожухотрубного теплообменника для пастеризации продукта»
Раздел: Промышленность, производство
Количество знаков с пробелами: 37105
Количество таблиц: 18
Количество изображений: 8

0 комментариев


Наверх