2.1 Содержательная формулировка задачи
Задачей расчета теплообменного аппарата является определение основных размеров аппаратов и выбор их общей компоновки. Здесь рассматривается определение диаметра корпуса аппарата, количества и длины трубок, выбор размещения трубок в трубных плитах и расположение перегородок в трубном и межтрубном пространствах, определение диаметра патрубков для рабочих сред.
2.2 Исходные данные
Исходные данные к проекту: Дымовые газы(13% СО,11% НО),в количестве 19,6 кг/с движутся по стальным трубам диаметром 53/50 мм со скоростью 14 м/с.Температура газов на входе в воздухоподогреватель - 380.Воздух в количестве 21.5 кг/сек нагревается от 30 до 260 и движется поперёк трубного пучка со скоростью 8 м/с.Трубы расположены в шахматном порядке.
2.3 Расчетные формулы
Ниже подробно рассмотрены основные расчетные формулы для решения поставленной выше задачи.
2.3.1 Расчет проточной части трубного пространства
Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых тепло от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку.
Так как имеет место сложный теплообмен излучением и конвекцией, то основное уравнение теплопередачи будет иметь вид:
(1)
где Q – тепловой поток (расход передаваемой теплоты), Вт,
K – суммарный коэффициент теплопередачи, Вт/(м2·К),
F - площадь поверхности теплопередачи, м2,
Δtср – средняя разность температур горячего и холодного теплоносителя, К.
Суммарный коэффициент теплоотдачи определяется следующим образом:
(2)
Коэффициент теплоотдачи для воды, передаваемой тепло конвекцией, равен:
(3)
где Nu – критерий Нуссельта, характеризующий интенсивность перехода тепла на границе поток – стенка;
λ – коэффициент теплопроводности теплоносителя;
d – диаметр трубки.
Коэффициент Нуссельта для воды (при Re > 10000) найдем из соотношения:
(4)
где Re – критерий Рейнольдса, характеризующий соотношение сил инерции и трения в потоке:
(5)
Pr и Prст – критерий Прандтля, характеризующий отношение вязкостных и температуропроводных свойств теплоносителя и стенки трубопровода.
Коэффициент теплоотдачи для дымовых газов, передаваемых тепло излучением, равен:
(6)
где = 5,67 Вт / м2·К4 - коэффициент излучения абсолютно черного тела,
ε’ – степень черноты поверхности теплообменника;
εг – степень черноты дымовых газов;
Tг и Tв – средние температуры по Кельвину газов и воды соответственно.
Степень черноты дымовых газов найдем по соотношению [3]:
(7)
где - степени черноты углекислого газа и паров воды соответственно. Эти величины определяются по справочникам с учетом парциального давления газа и средней длины пути луча, который определяется по формуле:
(8)
где dн и dв – наружный и внутренний диаметры трубки соответственно;
s1 и s2 – шаги размещения трубок поперек и вдоль тока среды соответственно.
Степень черноты поверхности теплообменника равна
(9)
где - степень черноты стенки трубки.
Термическое сопротивление стальной стенки и загрязнений равно:
(10)
где rзагр1 и rзагр2 – тепловая проводимость загрязнений стенок;
δ – толщина стенки;
λст – коэффициент теплопроводности стенки.
Тогда коэффициент теплопередачи будет равен:
(11)
Средняя разность температур Δtср определяется следующим образом [2]:
(12)
где Δtб и Δtм – большая и меньшая разности температур на концах теплообменника соответственно.
Если отношение , то с достаточной точностью вместо уравнения (12) можно применять следующее уравнение:
(13)
Следует отметить, что из уравнения (12) вытекает: если Δtб =0 или Δtм =0, то и Δtср =0; если Δtб = Δtм, то Δtср = Δtб = Δtм.
Если температура одного из теплоносителей в процессе теплопередачи не меняется вдоль поверхности (конденсация насыщенного пара, кипение жидкости), то среднюю разность температур Δtср также определяют по уравнениям (12) и (13).
Формулы (12) и (13) применимы при условии, что в теплообменнике значение коэффициента теплопередачи К и произведение массового расхода на удельную теплоемкость G·с для каждого из теплоносителей можно считать постоянным вдоль всей поверхности теплообмена.
В тех случаях, когда вдоль поверхности теплообмена значительно меняется величина коэффициента теплопередачи К (или произведение массового расхода на удельную теплоемкость G·с), применение средней логарифмической разности температур [уравнение (12)] становится недопустимым. В этих случаях дифференциальное уравнение теплопередачи решают методом графического интегрирования.
Среднюю температуру воды найдем по формуле:
(14)
где tв нач и tв кон - начальная и конечная температуры воды соответственно.
Среднюю температуру дымовых газов найдем по формуле:
(15)
Средний расход тепла, передаваемого от дымовых газов к воде, найдем по формуле:
(16)
где Gв - весовой расход воды в теплообменнике;
cв – средняя удельная теплоемкость воды;
tв нач и tв кон - начальная и конечная температуры воды соответственно.
Площадь поверхности теплообмена аппарата находится из соотношения (1):
(17)
Расчетная длина трубок определяется по выражению:
(18)
Из уравнения непрерывности потока:
(19)
легко определяется площадь сечения трубок одного хода:
(20)
где G – весовой расход рабочей среды, кг / с;
w - скорость движения, м / с;
γ – удельный вес среды, кг / м3.
Площадь сечения определяется также соотношением
откуда находим количество трубок одного змеевика
(21)
где dв – внутренний диаметр трубок.
Если по формуле (17) длина трубок окажется больше, чем 6 – 7 м, то следует принять несколько параллельно работающих змеевиков. Число ходов при этом составит:
(22)
где L – рабочая длина трубок.
Общее количество трубок принятой длины L составит:
(23)
Это количество трубок необходимо разместить в трубной плите и соответственно с принятым размещением определить диаметр корпуса аппарата.
0 комментариев