2.1 Содержательная формулировка задачи

Задачей расчета теплообменного аппарата является определение основных размеров аппаратов и выбор их общей компоновки. Здесь рассматривается определение диаметра корпуса аппарата, количества и длины трубок, выбор размещения трубок в трубных плитах и расположение перегородок в трубном и межтрубном пространствах, определение диаметра патрубков для рабочих сред.

 

2.2 Исходные данные

Исходные данные к проекту: Дымовые газы(13% СО,11% НО),в количестве 19,6 кг/с движутся по стальным трубам диаметром 53/50 мм со скоростью 14 м/с.Температура газов на входе в воздухоподогреватель - 380.Воздух в количестве 21.5 кг/сек нагревается от 30 до 260 и движется поперёк трубного пучка со скоростью 8 м/с.Трубы расположены в шахматном порядке.

 

2.3 Расчетные формулы

Ниже подробно рассмотрены основные расчетные формулы для решения поставленной выше задачи.


2.3.1 Расчет проточной части трубного пространства

Основную группу теплообменных аппаратов, применяемых в промышленности, составляют поверхностные теплообменники, в которых тепло от горячего теплоносителя передается холодному теплоносителю через разделяющую их стенку.

Так как имеет место сложный теплообмен излучением и конвекцией, то основное уравнение теплопередачи будет иметь вид:

 (1)

где Q – тепловой поток (расход передаваемой теплоты), Вт,

K – суммарный коэффициент теплопередачи, Вт/(м2·К),

F - площадь поверхности теплопередачи, м2,

Δtср – средняя разность температур горячего и холодного теплоносителя, К.

Суммарный коэффициент теплоотдачи определяется следующим образом:

 (2)

Коэффициент теплоотдачи для воды, передаваемой тепло конвекцией, равен:

 (3)

где Nu – критерий Нуссельта, характеризующий интенсивность перехода тепла на границе поток – стенка;

λ – коэффициент теплопроводности теплоносителя;

d – диаметр трубки.

Коэффициент Нуссельта для воды (при Re > 10000) найдем из соотношения:

 (4)

где Re – критерий Рейнольдса, характеризующий соотношение сил инерции и трения в потоке:

 (5)

Pr и Prст – критерий Прандтля, характеризующий отношение вязкостных и температуропроводных свойств теплоносителя и стенки трубопровода.

Коэффициент теплоотдачи для дымовых газов, передаваемых тепло излучением, равен:

 (6)

где = 5,67 Вт / м2·К4 - коэффициент излучения абсолютно черного тела,

ε’ – степень черноты поверхности теплообменника;

εг – степень черноты дымовых газов;

Tг и Tв – средние температуры по Кельвину газов и воды соответственно.

Степень черноты дымовых газов найдем по соотношению [3]:


 (7)

где  - степени черноты углекислого газа и паров воды соответственно. Эти величины определяются по справочникам с учетом парциального давления газа и средней длины пути луча, который определяется по формуле:

 (8)

где dн и dв – наружный и внутренний диаметры трубки соответственно;

s1 и s2 – шаги размещения трубок поперек и вдоль тока среды соответственно.

Степень черноты поверхности теплообменника равна

 (9)

где  - степень черноты стенки трубки.

Термическое сопротивление стальной стенки и загрязнений равно:

 (10)

где rзагр1 и rзагр2 – тепловая проводимость загрязнений стенок;

δ – толщина стенки;

λст – коэффициент теплопроводности стенки.

Тогда коэффициент теплопередачи будет равен:


 (11)

Средняя разность температур Δtср определяется следующим образом [2]:

 (12)

где Δtб и Δtм – большая и меньшая разности температур на концах теплообменника соответственно.

Если отношение , то с достаточной точностью вместо уравнения (12) можно применять следующее уравнение:

(13)

Следует отметить, что из уравнения (12) вытекает: если Δtб =0 или Δtм =0, то и Δtср =0; если Δtб = Δtм, то Δtср = Δtб = Δtм.

Если температура одного из теплоносителей в процессе теплопередачи не меняется вдоль поверхности (конденсация насыщенного пара, кипение жидкости), то среднюю разность температур Δtср также определяют по уравнениям (12) и (13).

Формулы (12) и (13) применимы при условии, что в теплообменнике значение коэффициента теплопередачи К и произведение массового расхода на удельную теплоемкость G·с для каждого из теплоносителей можно считать постоянным вдоль всей поверхности теплообмена.

В тех случаях, когда вдоль поверхности теплообмена значительно меняется величина коэффициента теплопередачи К (или произведение массового расхода на удельную теплоемкость G·с), применение средней логарифмической разности температур [уравнение (12)] становится недопустимым. В этих случаях дифференциальное уравнение теплопередачи решают методом графического интегрирования.

Среднюю температуру воды найдем по формуле:

 (14)

где tв нач и tв кон - начальная и конечная температуры воды соответственно.

Среднюю температуру дымовых газов найдем по формуле:

 (15)

Средний расход тепла, передаваемого от дымовых газов к воде, найдем по формуле:

 (16)

где Gв - весовой расход воды в теплообменнике;

cв – средняя удельная теплоемкость воды;

tв нач и tв кон - начальная и конечная температуры воды соответственно.

Площадь поверхности теплообмена аппарата находится из соотношения (1):

 (17)


Расчетная длина трубок определяется по выражению:

 (18)

Из уравнения непрерывности потока:

 (19)

легко определяется площадь сечения трубок одного хода:

 (20)

где G – весовой расход рабочей среды, кг / с;

w - скорость движения, м / с;

γ – удельный вес среды, кг / м3.

Площадь сечения определяется также соотношением

 

откуда находим количество трубок одного змеевика

 (21)

где dв – внутренний диаметр трубок.

Если по формуле (17) длина трубок окажется больше, чем 6 – 7 м, то следует принять несколько параллельно работающих змеевиков. Число ходов при этом составит:

 (22)

где L – рабочая длина трубок.

Общее количество трубок принятой длины L составит:

 (23)

Это количество трубок необходимо разместить в трубной плите и соответственно с принятым размещением определить диаметр корпуса аппарата.


Информация о работе «Расчет кожухотрубчатого двухходового воздухоподогревателя парового котла»
Раздел: Промышленность, производство
Количество знаков с пробелами: 25437
Количество таблиц: 0
Количество изображений: 4

0 комментариев


Наверх