4.6 Загрязнение атмосферы

 

Среди различных отраслей народного хозяйства энергетика занимает первое место в загрязнении атмосферы выбросами пыли, оксидами серы и азота. В современных условиях к очистке выбросов промышленности предъявляются повышенные требования, эффективность очистных установок должна быть не ниже 99%.

Под качеством атмосферы понимают совокупность ее свойств, определяющих степень воздействия физических, химических и биологических факторов на людей, растительный и животный мир, а также на материалы, конструкции и окружающую среду в целом. Качество атмосферы зависит от ее загрязненности, причем сами загрязнения могут попадать в нее от природных и антропогенных источников. С развитием цивилизации в загрязнении атмосферы все больше и больше превалируют антропогенные источники.

В зависимости от формы материи загрязнения подразделяют на вещественные, энергетические и вещественно-энергетические. К первым относят механические, химические и биологические загрязнения, которые обычно объединяют общим понятием – примеси, ко вторым, – тепловые, акустические, электромагнитные и ионизирующие излучения, а также излучения оптического диапазона; к третьим – радионуклиды.

В глобальном масштабе наибольшую опасность представляет загрязнение атмосферы примесями, так как атмосферный воздух выступает своего рода посредником загрязнения всех других объектов природы, способствуя распространению больших масс загрязнения на значительные расстояния. Промышленными выбросами (примесями), переносимыми по воздуху, загрязняется Мировой океан, закисляются почва и вода, изменяется климат и разрушается озоновый слой.

Под загрязнением атмосферы понимают привнесение в нее примесей, которые не содержатся в природном воздухе или изменяют соотношение между ингредиентами природного состава воздуха.

Численность населения Земли и темпы его роста являются предопределяющими факторами повышения интенсивности загрязнения всех геосфер Земли, в том числе и атмосферы, так как с их увеличением возрастают объемы и темпы того, что добывается, производится, потребляется и отправляется в отходы. Наибольшее загрязнение наблюдается в городах, где обычные загрязнители – это пыль, сернистый газ, оксид углерода, диоксид азота, сероводород и др. В некоторых городах в связи с особенностями промышленного производства в воздухе содержатся специфические вредные вещества, такие, как серная и соляная кислота, стирол, бензапирен, сажа, марганец, хром, свинец, метилметакрилат.

 

4.7 Очистка выбросов от пыли в энергетике

Для очистки газов от пыли в энергетике широкое распространение в нашей стране получили различные очистные установки: батарейные циклоны, трубы Батарейные циклоны по своей конструкции аналогичны установкам, используемым для очистки газов в агломерационном производстве.

Скрубберы МП ВТИ и ЦС ВТИ на большинстве электростанций при реконструкции заменены на трубы Вентури с центробежными каплеуловителями.

Из установок мокрой очистки последние являются наиболее эффективными и надежными. Условия эксплуатации мокрых газоочистных установок в энергетике аналогичны условиям их применения в агломерационном производстве. Поэтому здесь остановимся более подробно на электрической очистке газов.

Электрофильтры с высокой эффективностью до 90% очищают газы ТЭЦ, отапливаемые сернистым углем. При малосернистом и высокозональном угле электрофильтры не обеспечивают требуемой степени очистки. Основная причина этого заключается в высоком УЭС слоя осажденной пыли – более 109 Ом м.

Высокое значение УЭС пыли значительно снижает эффективность пылеулавливания в электрорфильтре в результате запирания короны, когда на поверхности осажденного слоя пыли накапливается такой заряд, при котором прекращается коронный разряд, разность потенциалов между коронирующим и осадительным электродами становится близкой к нулю и осаждении частиц пыли прекращается; возникновения обратной короны, когда на поверхности слоя пыли заряд достигает такой величины, что происходит разряд, в результате чего часть пыли нейтрализуется, часть – приобретает заряд противоположного знака, при этом частицы пыли поступают в газовый поток.

Повышение эффективности пылеулавливания в фильтрах ТЭЦ, сжигающих малосернистое топливо, может быть достигнуто в результате снижения удельного сопротивления слоя пыли. Все мероприятия, направленные на достижение высокого значения эффективности работы электрофильтров, можно розделить на три группы:

снижение электрического сопротивления пыли повышением температуры очищаемых газов – приводит к увеличению электронной эмиссии и повышению проводимости пыли;

снижение электрического сопротивления пыли путем ведения в газовый поток кондиционирующих добавок (пар, аммиак, оксиды азота и др.) или снижением температуры газов до точки росы, при этом в результате капиллярной конденсации увеличивается проводимость слоя пыли;

применение импульсных и знакопеременных источников высоковольтного электрического питания электрофильтров.

Перед электрофильтрами температура газов составляет обычно 140–1600С, влажность их низкая, удельное электрическое сопротивление пыли составляет более 109 Ом · м. При увеличении температуры газов до 340–4300С УЭС снижается до оптимального уровня – 106-107 Ом · м. Несмотря на то, что объем газов почти удваивается, следовательно, почти в два раза увеличивается их скорость в электрофильтрах, а время пребывания в аппарате сокращается, эффективность пылеулавливания значительно возрастает и отвечает требованиям санитарных норм. В зарубежной практике в 70-е так называемые «горячие» электрофильтры получили широкое распространение. Длительный опыт эксплуатации показал их малую перспективность, основными причинами которой оказались: необходимость применения высококачественных конструкционных сталей, что значительно удорожает стоимость оборудования электрофильтра; большие потери тепла, что приводит к удорожанию электроэнергии и повышенному расходу топлива.

Перспективным направлением в кондиционировании газов является увеличение влажности газов перед электрофильтрами на 8–16 г/м3 за счет передачи пароводяной смеси в газоходы или установки специального скруббера полного испарения, а также сухое охлаждение газов до температуры 90–1300С. На Кемеровской ГРЭС за котлом паропроизводительностью 420 т/ч установлен электрофильтр типа ПГДС, эффективность пылеулавливания в котором без кондиционирования газов составляет 97%. При подаче пароводяной смеси перед электрофильтром эффективность увеличивалась до 99,0–99,5% за счет снижения УЭС пыли в 6 раз и повышения пробивной прочности межэлектродного промежутка на 10%. На Березовской ГРЭС‑1 за котлом П‑67 перед четырехпольным электрофильтром предусмотрено сухое охлаждение газов со 160 до 1400С пропусканием 20% их через воздухоподогреватель с последующей утилизацией тепла в теплообменниках для подогрева воды. Эффективность пылеулавливания достигла 99%. Этот способ имеет преимущества, так как позволяет утилизировать тепло, хотя, с другой стороны приводит к усложнению системы отвода и очистки, так как необходима установка двух дополнительных теплообменных агрегатов. На Владивостокской ТЭЦ‑1 за котлом БКЗ-210 охлаждение газов со 158 до 1350С при одновременном снижении их скорости с 1,4 до 1,1 м/с позволило повысить эффективность пылеулавливания в трехпольном электрофильтре с 95,4 до 99,5%.

Их числа химических реагентов наибольшее распространение получило кондиционирование газов газообразными оксидами серы, при подаче которых эффективность электрофильтра повышается с 85 до 99%. При этом оксиды серы в результате последующих химических реакций полностью поглощаются щелочными составляющими пыли, не вызывая коррозии оборудования и вторичного загрязнения атмосферы. В зарубежной практике этот метод нашел широкое распространение, изучался вопрос кондиционирования газов твердыми натриевыми соединениями – поваренной солью, содой, сернокислым натрием. При этом сопротивление слоя пыли снижалось на два порядка, эффективность пылеулавливания возрастала до 99%.

Одним из перспективных, не требующих значительных затрат способов повышения эффективности пылеулавливания в электрофильтрах является способ питания электрофильтра импульсным напряжением. Сущность импульсного питания электрофильтра заключается в том, что имеется два источника питания, один из них работает на постоянном пониженном напряжении, например 20-30 кВ, а второй через определенные промежутки времени (3-40 мс) в течение 0,2-0,5 мс подает напряжение 50–60 кВ. Опыт эксплуатации показал достаточно высокую эффективность применения импульсного питания, к. п. д. работы электрофильтра повысился с 88,5 до 94% для очистки пыли сопротивлением 109-1011 Ом · м и с 96,1 до 97,4% – 108-109 Ом · м.

В настоящее время для новых крупнейших электростанций ведутся разработки современных технических решений по достижению при минимальных затратах требований санитарных норм по очистке газов от летучей золы. При этом решению подлежат две проблемы: разработка компактной конструкции электрофильтра, которая бы разместилась в блоке ТЭС; обеспечение остаточного содержания в выбрасываемых газах при сжигании высокозольных углей, когда начальная запыленность газов превышает 60 г/м3, в пределах 0,1-0,2 г/м3. Поскольку при работе электрофильтров с повышенной длиной осадительных электродов (более 12 м) было отмечено снижение эффективности пылеулавливания по сравнению с электрофильтрами с длиной электродов 7 и 9 м, то на вновь строящихся электростанциях будут установлены двухъярусные электрофильтры с обычной длиной электродов. Ожидаемая эффективность пылеулавливания составляет 99,5%.


Информация о работе «Расчет котла ТВГ-8М»
Раздел: Промышленность, производство
Количество знаков с пробелами: 74414
Количество таблиц: 5
Количество изображений: 0

Похожие работы

Скачать
116208
21
14

... и переносят к месту их складирования. 9. Экономическая часть   9.1 Составление сметной документации   9.1.3 Локальная смета Локальная смета №1 на общестроительные работы Специализированной поликлиники в г. Краснодаре Сметная стоимость 17 688 432 руб. Нормативная трудоемкость 58 981,6 чел/час Сметная заработная плата 1 786 724 руб.   ...

Скачать
149172
26
0

... .. И тогда все строительно-монтажные работы котельной при работе на газе-дегазации составят 157,04 тыс.руб., а стоимость оборудования составит 1872,92 тыс.руб. Таблица 3.2 Расчет договорной цены на строительство котельной Стоимость работы, тыс.руб. при работе: № Наименование затрат Обоснование на угле на газе от дегазации 1 2 3 4 5 1. Базисная сметная стоимость ...

Скачать
133817
24
3

... кг/с Gсет*(t1-t3)/ (i2/4,19-tкб)* 0,98 7,14 9,13 2,93 0,48 Р16 Количество конденсата от подогревателей сетевой воды Gб кг/с Дб 7,14 9,13 2,93 0,43 Р17 Паровая нагрузка на котельную за вычетом расхода пара на деаэрацию и на подогрев сырой воды, умягчаемой для питания ...

Скачать
72790
18
5

... , характерными для рыночной экономики: ипотечный кредит, лизинговые поступления, частные вложения инвесторов и др. ГЛАВА 2  АНАЛИЗ ПРОИЗВОДСТВА продукции растениеводства НА КСУП “БРИЛЁВО” 2.1. Краткая характеристика КСУП “БРИЛЁВО”  и выпускаемой им продукции Коммунальное сельскохозяйственное унитарное предприятие “Брилёво” основано на коммунальной форме собственности и находится ...

0 комментариев


Наверх