3. Тестоделительная машина
Тестоделительная машина ХДФ-М2 Машина ХДФ-М2 выпускается киевским заводом «Хлебмаш» (Рис. 14). Она предназначена для деления ржаного и ржано-пшеничного теста на заготовки массой 0,7—1,25 кг и состоит из приемной воронки 3 , примыкающей к рабочей камере 2, в которой размещено два нагнетающих шнека 1. Рабочая камера соединена с горловиной 4, к цилиндрической проточке которой примыкает барабанная делительная головка 5. В диаметральной цилиндрической проточке 15 головки размещено два плавающих поршня 6. Сверху головка закреплена откидным ограждающим щитком 7. Приводной электродвигатель 14 расположен на шарнирно закреплённой площадке 13, находящейся в нижней части станины 17. С помощью клиноременной передачи 16 электродвигатель соединен с промежуточным валом 18. С него движение с помощью шестерен 19 и 20 сообщается шнекам 1, а клиновым ремнем 12 — валу червячного редуктора 9. Последний через мальтийский крест сообщает периодическое движение делительному барабану. Натяжение ремня 12 осуществляется роликом 10 с винтовым фиксатором 11.
По специальному заказу делитель может быть доукомплектован транспортером, привод которого осуществляется от звездочки 8.
Рис. 14 Тестоделительная машина ХДФ-М2
Устройство делительной головки. В чугунный барабан 13 (Рис. 15) головки запрессовано две цапфы 12, которые входят в подвижные подшипники 3, установленные с помощью болтов 4 в кронштейнах 2, крепящихся в горловине 1 болтами 5 . В диаметральной проточке барабана размещены спаренные алюминиевые поршни 10, соединенные винтом, имеющим правую и левую резьбу на концах. На болте 8 закреплено фиксирующее пружинное устройство 7, предохраняющее винт от произвольного проворачивания во время работы. Чтобы поршни не проворачивались, в цилиндрической проточке барабана закреплена лыска 6. Конечные положения поршней фиксируются с помощью винтов 11.
Рис. 15 Делительная головка тестоделительной машины ХДФ-М2
Расчёт нагнетательного органа. Расчёт включает следующие разделы:
1. Определение производительности тестоделительной машины на основном ассортименте.
2. Расчёт рабочего процесса и определение мощности электродвигателя, необходимого для привода машины.
При расчёте следует учитывать ряд особенностей шнекового нагнетателя, который обычно работает непрерывно, а отбор отмеренных тестовых масс осуществляется периодически. В этом случае в рабочей и мерной камерах делителя давление изменяется по синусоиде от максимума в момент отсутствия отбора до минимума в момент наполнения мерной камеры.
Рис. 16 Схема шнекового нагнетателя и эпюра давления:
D и d – диаметры шнека и его вала; L – длина рабочей части нагнетателя;
p0 и pр – начальное и конечное давление; t – шаг шнека; δ – толщина шнека.
Давление на винтовую лопасть шнека перед каждой лопастью меньше, а за ней больше среднего значения, которое в камере прессования изменяется по закону, близкому к линейному (рис. 16).
Рассчитаем шнековый нагнетатель для ржаного теста по следующим данным:
диаметр шнека м; его шаг м; число рабочих шагов ;
толщина лопасти шнека м; диаметр вала шнека м; давление в рабочей камере Па; частота вращения об/мин; средняя плотность теста кг/м3; коэффициент подачи теста ; угол трения ржаного теста ; .
Для упрощения расчётов предположим, что нагнетающий шнек имеет плоскую винтовую поверхность со средним углом подъёма винтовой линии . Поскольку осевое перемещение частиц материала по высоте перашнека будет неодинаковым, то это следует учесть коэффициентом отставания.
Определим средний угол подъёма винта шнека:
, (3.1)
, тогда
(3.2)
Производительность одношнекового нагнетателя можно рассчитать по формуле:
(3.3)
кг/с
кг/мин
определяется из конструктивных соображений по условию ; - средняя плотность теста при давлении , кг/м3 (определяется по диаграмме состояния теста); для нагнетателей с цилиндрической гладкой поверхностью ; -угловая скорость шнека, рад/сек.
Крутящий момент на валу шнека:
(3.4)
Н∙м
Приводная мощность с учётом КПД подшипников и привода , :
(3.5)
Вт
По полученной мощности для данного нагнетателя подбираем двигатель:
MTF011-6 с мощностью на валу 1,7 кВт, частотой вращения 13,33 с-1 и КПД=0,76.
Наиболее сложным является определение максимального давления в камере сжатия и характера его изменения при работе тестоделительной машины. В этом направлении следует проводить как теоретические, так и экспериментальные исследования с натурными образцами нагнетателей. К нерешённым вопросам следует также отнести определение оптимальных параметров шнекового нагнетателя: диаметр шнековой камеры, её длину, частоту вращения шнека и величину зазора между шнеком и стенкой шнековой камеры.
Данные делители много раз подвергались реконструкции, однако они и сейчас нуждаются в творческой переработке с использованием новых конструктивных решений и новых материалов. Прежде всего следует обратить внимание на облегчение разборки и очистки нагнетательных шнеков, облегчение тестового барабана, совершенствования системы регулирования массы заготовки и создание механизма, позволяющего регулировать подачу теста при изменении массы заготовки.
Вывод.В данном разделе были рассмотрены разновидности и особенности тестоделительных машин. Подробно рассчитаны основные элементы расчета основных узлов выбранной мной машины.
Список используемой литературы:
1. Хромеенков В. М. Оборудование хлебопекарного производства \ Хромеенков В. М.– М.: ИРПО; Изд. центр «Академия», 2000.- 320 с.
2. Лисовенко А. Т. Технологическое оборудование хлебозаводов и пути его совершенствования \ Лисовенко А. Т.. – М.: Легкая и пищевая пром-сть, 1982. – 208 с.
0 комментариев