3.1 Готовые припои

Наиболее широкое применение при пайке нашли готовые припои. Готовые припои классифицируют по следующим признакам (ГОСТ 19250—73): по величине их температурного интервала плавления; степени расплавления при пайке; основному или наиболее дефицитному компоненту, способности к самофлюсованию; способу изготовления и виду полуфабрикатов (рис. 3).

Температурный интервал плавления припоя — важнейший классификационный признак. Такой интервал ограничен температурой начала (солидус) и конца (ликвидус) плавления припоя. По температуре конца расплавления припои разделяют на пять классов: особолегкоплавкие (tпл £ 145°С); легкоплавкие (145°С<tпл<450°С); среднеплавкие (450 ° C < 1100 °С); высокоплавкие (1100 °С<tпл< 1850 °С); тугоплавкие (tпл ³ 1850 °С).

Число различных припоев, разработанных к настоящему времени, весьма велико и продолжает непрерывно увеличиваться, что обусловлено повышением требований, предъявляемых к механическим и служебным свойствам паяных соединений, и необходимостью улучшения паяемости существующих и новых материалов.

Классификация готовых припоев по степени их автономного расплавления. По степени автономного расплавления при пайке припои подразделяют на полностью и частично расплавляемые. Ранее применяли главным образом припои, полностью расплавляемые при пайке. Исключение составляли припои, применяемые в стоматологической технике, и частично расплавляемые припои с широким интервалом затвердения, которые использовали главным образом при абразивной пайке.

В 60-е и последующие годы получили развитие неоднородные, частично расплавляемые припои, состоящие из легкоплавкой части припоя и твердого наполнителя, не плавящегося автономно при температуре пайки. Такие припои в соответствии с современной классификацией металлических материалов называют композиционными.

Наполнитель композиционных припоев чаще всего представляет собой порошок, перемешанный с порошком легкоплавкой части припоя. При пайке таким припоем сцепление частиц наполнителя в шве и шва с паяемым металлом возникает в результате взаимодействия последнего с жидкой частью припоя и ее кристаллизации, а также в результате спекания наполнителя между собой и с паяемым металлом. Ранее композиционный припой такого типа был условно назван металлокерамическим, а пайка металлокера-мической, так как при ней имеют место процессы спекания, аналогичные процессам в порошковой металлургии

В композиционных припоях другого вида наполнитель может состоять из проволоки, сетки, стержней, волокон. При этом легкоплавкая часть припоев может быть скомпонована с наполнителем путем равномерного их перемешивания, прессования, штамповки, спекания или иметь вид порошка из частиц наполнителя, предварительно смоченных легкоплавкой составляющей припоя (армированные припои).

3.2 Припои, образующиеся при пайке

 

К этой группе относятся контактно-реактивные припои, получающиеся при контактно-реактивном плавлении паяемого материала с контактными прокладками или покрытиями или последних между собой; контактные твердогазовые припои, образующиеся в результате плавления паяемого металла, контактных прокладок или покрытий в парах металлов или неметаллов, находящихся в атмосфере печи; реактивно-флюсовые, образующиеся в результате вытеснения металлов из компонентов реактивных флюсов.

Контактно-реактивные припои получают между паяемыми разнородными металлами или между паяемым металлом, прокладками, покрытиями, если они или их основы образуют эвтектики либо непрерывный ряд твердых растворов с минимальной температурой плавления ниже температуры пайки (слоистые припои). Контактно-реактивное плавление металлов происходит через несплошности в их оксидных пленках и развивается только при достаточном содержании в эвтектике или твердом растворе каждого из контактирующих металлов.

Для слоистого контактно-реактивного припоя в виде фольги существенное значение имеет соотношение объемов контактирующих слоев, которое должно быть таким же, как в эвтектике (или в твердом растворе с минимальной температурой плавления), а расположение прослоек должно обеспечивать контакт реагирующих материалов. Если один из контактирующих элементов имеет повышенную упругость испарения, то его лучше помещать между прослойками других металлов, имеющих относительно меньшую упругость испарения в условиях пайки.

Использование хрупких припоев системы Ni—Сг—В в виде пластичной нихромовой фольги, насыщенной с поверхности бором, также обеспечивает достаточно высокую пластичность припоя при сборке.

Контактные твердогазовые припои получают в результате плавления соединяемых металлов, металлических прокладок, покрытий, компактных кусков, отличающихся по составу от паяемого материала и взаимодействующих с парами элементов, с которыми они образуют эвтектики или твердые растворы с минимальной температурой плавления (ниже температуры пайки).

Реактивно-флюсовые припои образуются в результате восстановления металлов из компонентов флюсов или диссоциации одного из них. Возможность восстановления металлов из флюсов определяется термодинамическими условиями предпочтительного протекания реакций, в результате которых свободная энергия системы изменяется на возможно большую величину.

Классификация припоев по величине температурного интервала их плавления. Способность припоев к растеканию и затеканию в зазор улучшается с уменьшением их температурного интервала плавления. При пайке припоями с широким температурным интервалом плавления предварительная укладка их у зазора не всегда допустима из-за опасности втягивания легкоплавкой части припоя в зазор. При этом более тугоплавкая часть припоя образует у зазора «королек», не расплавляющийся при пайке. Вследствие этого свойства паяных соединений могут существенно отличаться от ожидаемых, а образование королька у зазора может приводить к ухудшению товарного вида и удорожать обработку после пайки. Припои с узким температурным интервалом плавления плохо удерживаются в сравнительно широких капиллярных зазорах, но лучше затекают в узкие зазоры. При пайке изделий с большой площадью спая или вертикальными зазорами с предварительной укладкой в них припоя лучше использовать припои с широким температурным интервалом плавления, а при некапиллярных зазорах — композиционные.

Классификация припоев по основному компоненту. К числу металлических припоев, содержащих более 50 % одного из компонентов, относятся припои оловянные, кадмиевые, цинковые, магниевые, алюминиевые, медные, кобальтовые, никелевые, марганцевые, золотые, палладиевые, платиновые, титановые, железные, циркониевые, ниобиевые, молибденовые, ванадиевые и др. При близком содержании некоторых компонентов припои называют по этим основным компонентам, например, оловянно-свинцовые, медно-никелево-марганцевые и др. При содержании одного или нескольких легирующих компонентов, являющихся редкими или драгоценными металлами, припой иногда называют по этим компонентам, например, серебряный, золотой и др., хотя содержание их в припое может составлять несколько процентов.

Классификация припоев по способности к самофлюсованию. Существуют припои, которые могут выполнять также функции флюсов. Припои, обладающие свойствами самофлюсования, должны содержать легирующие элементы-раскислители с сильным химическим сродством к кислороду. Эти элементы должны способствовать растекаемости и смачиваемости припоем паяемого металла. Продукты раскисления, образующиеся при взаимодействии такого припоя с паяемым металлом, должны легко удаляться из шва, в частности, для этого температура плавления их должна быть ниже температуры пайки. К элементам-раскислителям относятся литий, калий, натрий, фосфор, цезий, бор и др.

Припои, легированные этими элементами и способные к самофлюсованию в инертной газовой среде или на воздухе, называют самофлюсующими в отличие от остальных припоев, при пайке которыми необходимы флюсы, вакуум или активные газовые среды.

Классификация припоев по способу изготовления и виду полуфабриката. Многообразие паяных конструкций и способов пайки, конструкционных металлов и припоев с различными свойствами и необходимость их совместимости в производстве стимулировали развитие различных способов изготовления полуфабрикатов припоев. Старые традиционные припои в виде чушек (для пайки погружением в расплавленный припой), в виде зерен и литых прутков при многих способах пайки и типах конструкций современных изделий оказались не всегда удобными. Перед пайкой для предварительной укладки у зазора или в зазор необходимы припои в виде листов, лент, фольги, проволоки. Однако вследствие низкой пластичности многих припоев получение их в таком виде способами обработки давлением (прокатки, протяжки) невозможно. Если компоненты таких припоев способны к образованию эвтектики, то из них изготовляют путем прокатки многослойную фольгу, а путем протяжки многослойную проволоку из пластичных составляющих припоя.

Припои в виде многослойных листов нашли применение в электронике и радиотехнике. В процессе изготовления таких листов припоев, хрупких в литом состоянии, целесообразно менее пластичные составляющие помещать между более пластичными составляющими припоя, чтобы при прокатке края наружных листов сваривались, образуя герметичный пакет, предотвращающий выдавливание наружу внутренней хрупкой составляющей; образующийся при прокатке между листами вакуум способствует прочному сращиванию слоев припоя.

Другой способ получения пластичных листов из составляющих хрупкого припоя заключается в том, что на пластичную фольгу одного из компонентов припоя, например, никелевую фольгу, наносят смесь порошков остальных компонентов, например железа, бора, кремния, хрома и др., смешанных со связкой — метил-целлюлозой. Толщина слоя такой пасты, наносимой на фольгу никеля, составляет 20 % общей ее толщины. После сушки, прокатки с обжатием на ~33 % и сглаживания прокаткой, нагрева в восстановительной атмосфере при температуре 954 °С и прокатки до толщины 0,1 мм получают пластичную фольгу. При нагреве до температуры пайки и плавлении фольги получается припой Ni—Fe—Si—В—Сг (Пат. 34765228 США, МКИ3 кл. 29—182) требуемого состава.

Изготовление фольги из некоторых припоев, имеющих пониженную пластичность в литом состоянии, например припои Си— Mn—Ni—Li, возможно прокаткой из жидкого состояния с последующей прокаткой полученных листов до требуемой толщины вхолодную, с промежуточными отжигами. Ленту малопластичных припоев иногда получают распылением стальной стружки или прокаткой из порошка с последующим спеканием.

Получение листа припоя из жидкого состояния возможно не только прокаткой, но также путем нагрева до расплавления и сдавливания затвердевающих мелких капель припоя пуансоном.

При необычной форме соединяемых деталей или стесненном монтаже, например радиотехнических схем, при необходимости механизации и автоматизации процессов сборки и пайки, для снижения отходов припоя используют литые заготовки припоя требуемой формы. Такие заготовки представляют собой фасонные отливки в виде сеток, колец, пластин различной формы, которые получают, например, литьем в кокиль или по выплавляемым моделям.

Малопластичные припои можно применять в виде точеных колец. При этом по наружной стороне разрезных колец припоя круглой или другой формы для уменьшения расхождения стыкуемых концов во время нагрева при пайке проводят обкатку роликом с пирамидальными выступами, что обеспечивает образование в заготовке напряжений сжатия (по данным Д. Е. Фута).

Припои могут быть использованы в виде порошков. Применение порошков припоев позволяет снизить трудоемкость и стоимость их изготовления. Для многих порошковых припоев после их изготовления необходима активация поверхности частиц путем нагрева в атмосфере водорода или в вакууме ниже температуры их солидуса. Порошки припоев получают следующими способами: механическим измельчением (в том числе в шаровых мельницах с чугунными шарами); в вибрационных и вихревых мельницах; путем распыления (раздува) жидкого припоя в струе пара, воды или газа и т. п. Порошки припоев, полученные распылением в среде инертного газа, например, аргона, имеют сферическую форму, незагрязняются нежелательными примесями и не имеют оксидных пленок на поверхности. Однако для конструкций многих типов применение припоев в виде порошков нетехнологично при сборке.

Для современного производства в связи с механизацией и автоматизацией процессов более удобны припои в виде паст, а также прессованных или формованных заготовок из смеси порошка припоя и связки. Пасты обычно представляют собой тонкие смеси (10—100 мкм) металлических компонентов в виде порошков и связующих нейтральных веществ (связок), испаряющихся при пайке. Для нанесения паст применяют пневматические дозирующие устройства, иногда с электрическими системами управления, в том числе реле времени, встроенным в автомат.

Применение паст облегчает внесение припоя при сборке, позволяет точно дозировать состав и количество припоя, количество флюса, а при хороших адгезионных свойствах пасты обеспечивать фиксацию деталей без сборочных приспособлений. Применение паст обеспечивает также полное улетучивание материала связки, исключает высыхание, и изменение химического состава смеси при длительном хранении.

Из порошков изготовляют и прессованные заготовки. Обычно такие заготовки, имеющие внешнюю форму, подогнанную к контуру сопряженных паяемых поверхностей, укладывают предварительно в зазор между деталями. Для обеспечения высокой чистоты поверхности такие заготовки получают горячим прессованием, после чего на них наносят плотный слой пластмассового покрытия и упаковывают в защитные чехлы. Температурный интервал плавления таких припоев (по В. Вуиху) не должен превышать 85 °С во избежание ликвации припоя при медленном нагреве. ' По данным Г. А. Асиновской, для изготовления таблеток и закладных деталей не пригодны порошки со сферической формой частиц. Для этого необходимы порошки с частицами неправильной формы, получаемые при распылении струи жидких припоев струей воды.

В качестве связки при изготовлении паст из порошков могут быть использованы многие вещества, испаряемые при нагреве без остатка: вода и ее смеси с флюсом ПВ 209; акриловая смола, растворенная в растворителе Р-5; полистирол, растворенный в летучем растворителе — ксилоле или лигроине (нафте). При этом 20—25 % связки составляют гранулы полистирола. В готовую связку вводят чистый порошок припоя, например меди, размерами частиц не крупнее 200 мкм. Перед пайкой необходима сушка детали с нанесенной пастой в течение 15—20 мин. Однако такая связка может загораться. По данным Л.А. Гржимальского и Ю.Ф. Сидохина, в качестве связки можно использовать раствор лака в ацетоне. При пайке до температуры 1150 °С возможна диффузия углерода из связки в паяемый металл.

В качестве связки при изготовлении формованных заготовок припоя в виде кольца из порошка хрупкого припоя используют боросиликатное неорганическое стекло с добавками флюсующего вещества.

Для облегчения работы шприцевых дозирующих устройств, наносящих пасту из высокоплавких припоев, применена связка, имеющая состав (об. %): 85—91 полибутилена; 3—5 соединений из группы полиметилэфира этиленгликоля и просто этиленгликоля; 5—10 воды; 0,5—1,0 твердой акриловой смолы из низших сополимеров эфиров акриловой и метакриловой кислот (Пат. 3475442 США, МКИ 3 кл. 260—296).

В некоторых случаях необходимо применять неэлектропроводный порошок припоя. Подобный порошок из меди и оловянно-свинцовых припоев может быть изготовлен в виде частиц диаметром 5—500 мкм путем покрытия их слоем диэлектрического органического флюса с температурой плавления ниже температуры плавления припоя, образующего сплошные электроизоляционные покрытия, адгезионно удерживающие частицы припоя на паяемой поверхности. Для этой цели наиболее пригодны полимерные органические флюсы, например канифоль.

В 80-х годах была разработана новая технология получения фольги из хрупких припоев путем быстрого охлаждения их из жидкого состояния со скоростью ~106 °С/с. Такие условия охлаждения достигаются:

1) распылением жидкого припоя на водоохлаждаемый барабан;

2) подачей струи припоя в зазор площадью 5—70 'мм2 между валками, вращающимися со скоростью >0,2 м/с, с последующей обработкой фольги в нейтральной или восстановительной среде при температуре 300—500 °С;

3) подачей струи припоя на один или два медных валка, вращающихся со скоростью 0,2 м/с (толщина фольги 15—70 мкм).

Такие фольги припоев достаточно пластичны и складываются «на себя» с нулевым радиусом без излома; в структуре припоя в аморфном (стеклообразном) состоянии может находиться 100— 50 % металла. Расстекловывание и переход в хрупкое состояние происходит при достаточно высокой его температуре (~0,5/пл) и не влияет на температурный интервал плавления припоя. При этом фольга остается химически гомогенной и плавится равномерно. Таким способом в США была получена лента фольги припоев системы Ni—Сг—В—С, которая предназначалась для бесфлюсовой пайки в сухом водороде, инертном газе или вакууме при зазоре шириной 0,100 мм и была применена для пайки лопаток с ободом (Пат. 4250223 США МКИ 3 кл. 428/606 В 22 Г 5/00).

В табл. 1 приведены данные о пластичных фольгах припоев на основе меди и никеля.

Припои BCuPl—BCuP7, № 4—7 получают в виде фольги путем сверхбыстрого охлаждения.

Эти материалы имеют формулу TX, где Т — переходной металл, а X — элемент из группы Р,В, С,А1, Si, Sn, Gl, In, Be, As; i — атомная доля элемента 70—87%; / — атомная доля элемента 13—30 %. Все эти материалы ранее изготовляли в виде порошков.

Припой № 8 получен в стеклообразном состоянии при конденсации из паров.

Временное сопротивление разрыву соединений из меди, паяных встык припоем № 5 в виде фольги, толщиной 0,002—0,004 мм в печи (в диссоциированном аммиаке) при температуре 732 °С, составляет 158,5 МПа (временное сопротивление припоя 52,8 МПа). Перед пайкой припой укладывают в сборочный зазор.

Скорость охлаждения припоев при изготовлении должна быть весьма большой. Для припоев системы Ni—Cr—Fe—Si—В скорость охлаждения ~5,5-105°С/с (105—106°С/с).

Припои, не содержащие Si и В, применяют для пайки входных направляющих аппаратов, готовых панелей и колец с готовым уплотнением [31] из стали, легированной кремнием и алюминием. Припои системы Ni—Si по смачиваемости никелевых сплавов превосходят припои системы Ni—Р—Сг. Такого типа припои без бора выгоднее для пайки тонкостенных изделий.

Припои на никелевой основе систем Ni— Cr—Fe—Si—Со—В; Ni—Сг—Si—Fe—В; Ni—Si—В; Ni—P; Ni—Cr—Fe—Mo—Co—В; Ni—Cr—В при подаче их в виде струи на быстро вращающийся валок получают в виде фольги толщиной 25—60 мкм (Пат 14661 США, МКИ 3 В 23 К 35 8/30).

Никелевые хрупкие припои в виде пластичной фольги со смешанной структурой, состоящей из смеси метастабильной фазы с аморфной структурой, получаемой при закалке со скорстью охлаждения 105—106 °С/с, могут быть борированы путем нанесения на них амина борана при температуре 70 °С. Атомная доля образующихся в фольге боридов составляет 2—25 %. Бориды Ni, Fe, Со распадаются при температуре пайки и не препятствуют отведе-нию бора в основной металл — литейный никелевый жарпрочный сплав. Обычно нанесение бора не рекомендуют из-за образования весьма стабильных боридов W, Мо, Та, Al, Ti, Nb, не распадающихся при температуре пайки (Пат. 4160854 США, МКИ 3 кл. 428/607 Г 16 В 5/08).


Информация о работе «Технология пайки изделий при подготовке производства»
Раздел: Промышленность, производство
Количество знаков с пробелами: 58140
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
259162
24
61

... ? 25. В чем сущность биохимических, фотохимических, радиационно-химических, плазмохимических процессов? Указать области их применения. 26. Какие основные группы физических процессов используют в системах технологий? 27. Дать определение машиностроению как комплексной области. Какова структура машиностроительного предприятия? 28. Раскрыть сущность понятий «изделие», «деталь», «сборочная единица ...

Скачать
33521
4
0

, устанавливающими высокий технологический уровень и минимальные материальные и трудовые затраты. Следовательно, целью курсового проекта будет являться разработка технологии изготовления заданного изделия в условиях среднесерийного производ-ства. В процессе курсового проекта будут решены задачи разаработки маршрутного технологического процесса изделия, обоснованный выбор технологического обору- ...

Скачать
48436
2
4

... типизации технологических процессов литья, ковки и сборки. Технологическая подготовка производства на заводе выполняется службой главного технолога. На крупных заводах технологическая подготовка производства в горячих цехах производится отделом главного металлурга или под его непосредственным руководством. Технологическая подготовка на машиностроительных заводах может быть организована по ...

Скачать
369637
0
0

... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...

0 комментариев


Наверх