1.3 Физико-химические свойства пластовых флюидов
К пашийским отложениям (пласта DI) приурочена основная промышленная залежь нефти Ромашкинского месторождения. Нефть относится к типу смолистых, сернистых и парафинистых. В табл.1.3.1 и табл.1.3.2 представлены основные физико-химические свойства нефти.
Таблица 1.3.1 Физико-химические свойства и фракционный состав раз газированной нефти. Горизонт – Пашийский
№ | Наименование | Кол-во исслед. скважин | Диапазон изменения | Среднее значение | |
1 | Вязкость, 10-3Па-с | ||||
при 20º | 21 | 10,5-26,1 | 14,6 | ||
при 50º | 21 | 4,5-7,1 | 5,5 | ||
4 | Температура застывания, ºС | - | - | - | |
5 | Температура насыщения парафином, ºС | - | - | - | |
Содержание, % весовые | 6 | Сера | 21 | 0,7-1,3 | 1,3 |
7 | Смол селикагелевых | 21 | 26,0-28,0 | 27,0 | |
8 | Асфальтенов | - | - | - | |
9 | Парафинов | 21 | 1,0-5,6 | 2,8 | |
Выход светлых фракций % объёмные | 10 | Н.К. – 100º | 21 | 4,0-14,0 | 7,3 |
до 150º | - | - | - | ||
до 200º | 21 | 12,0-33,0 | 26,2 | ||
до 300º | 21 | 36,0-96,0 | 48,2 |
Таблица 1.3.2 Свойства нефти | ||||
Наименование | Пашийский горизонт | |||
Количество исследованных | Диапазон изменения | Среднее значение | ||
скважин | проб | |||
Давление насыщения газом, МПа | 45 | 135 | 7,95 | |
Газосодержание, при однократном разгазировании, м3/т | 45 | 135 | 59,28 | |
Объемный коэффициент при однократном разгазировании, доли единиц | 45 | 135 | 1,1576 | |
Газосодержание при диффренциальном разгазировании в рабочих условиях, м3/т | не опр. | не опр. | не опр. | |
Суммарное газосодержание, м3/т | не опр. | не опр. | не опр. | |
Плотность, кг/м3 | 45 | 135 | 805,1 | |
Вязкость, мПа*с | 45 | 135 | 3,7302 | |
Объемный коэффициент при дифференциальном разгазировании в рабочих условиях, доли ед. | 45 | 135 | 1,1461 |
Компонентный состав нефтяного газа, разгазированной и пластовой нефти представлен в табл. 1.3.3.
Таблица 1.3.3 Компонентный состав нефтяного газа, разгазированной и пластовой нефти (% мольные).
Наименование | Газ, выделившийся из нефти при однократном разгазировании в стандартных условиях | Смесь газа многоступенчатого разгазировании при условиях сепарации Р=0,5МПа Т=9ºС | Нефть, разгазированная однократно в стандартных условиях | Нефть после многоступенчатого разгазирования при условиях сепарации Р=0,1МПа Т=9ºС | Пластовая нефть |
1.Сероводород | 0,00 | 0,00 | 0,00 | ||
2.Углекислый газ | 0,65 | - | 0,11 | ||
3.Азот+редкие | 9,14 | - | 0,56 | ||
4.Метан | 32,43 | 0,00 | 1,3 | ||
5.Этан | 22,58 | 0,13 | 1,56 | ||
6.Пропан | 22,27 | 0,56 | 2,65 | ||
7.Изобутан | 2,65 | 0,22 | 0,53 | ||
8.Н-бутан | 6,68 | 0,84 | 1,78 | ||
9.Изопентан | 1,52 | 0,89 | 1,00 | ||
10.Н-пентан | 1,28 | 1,12 | 1,16 | ||
11.Остаток (С6+высшие) | 0,80 | 96,24 | 89,34 | ||
12.Остаток (С7+высшее) | |||||
13.Молекуляр-ная масса, М | |||||
14.Всего | 32,76 | 0,00 | 0,00 | ||
15.Остаток | |||||
16.Плотность при стандартных условиях, | |||||
нефти, г/см3 | 0,8578 | 0,8084 | |||
газа, г/л | 1,3621 |
Таблица 1.3.4 Физико-химические свойства пластовых вод Д1
№ | Наименование | К-во исслед. скважин | Диапазон изменения | Среднее значение |
1 | Газосодержание, м3/т | 3 | 0,248-0,368 | 0,317 |
2 | Сероводород, м3/т | 3 | - | - |
3 | Объёмный коэффициент | 12 | - | 4,4.10-5 |
4 | Вязкость, мПа.с | -//- | 1,80-1,98 | 1,93 |
5 | Общая минерализация, г/л | -//- | 252,2538/280,3818 | 270,3555 |
6 | Плотность (уд.вес), г/см3 | -//- | 1,1733-1,1910 | 1,1861 |
7 | С | -//- | 157519,8-174420,0 4442,55-4919,17 | 168743,3 4759,07 |
8 | мг/л О42- мг/экв.л | -//- | 4,8-42,7 0,10-0,89 | 18,3 0,38 |
9 | мг/л НСО3- мг/экв.л | -//- | 0-36,8 0-0,60 | 11,6 0,19 |
10 | Содержание ионов: Са2+ | -//- | 24081,4-28688,8 1201,66-1431,57 | 26181,0 1306,43 |
11 | Mg2+ | -//- | 3817,9-7656,3 314,0-630,42 | 4515,6 371,35 |
12 | К++Na+ | -//- | 59007,2-76378,1 2565,53-3320,79 | 70881,7 3081,81 |
Удельный вес в среднем равен 0,865; содержание серы – 1,47 %; смол – 27 – 37%; парафина – 5,3 %. Средняя вязкость нефти по месторождению составляет 30 мПа×с. В каменноугольных отложениях промышленно-нефтеносными являются турнейские, визейские, и верей-башкирские отложения. Нефтеносность отложений турнейского яруса C1t отмечается по керну, газокаротажу и по результатам опробования скважины. В визейском ярусе нефтепроявления встречены в отложениях бобриковского C1bb, тульского C1tl и алексинского C1alгоризонтов. Промышленные залежи нефти в основном приурочены к терригенным отложениям бобриковского (угленосного) горизонта. В угленосном горизонте Ромашкинского месторождения по комплексу геолого-геофизических данных выделено до 60 залежей. Промышленная нефтеносность верейского горизонта C2vr доказана опробованием скважин на соседнем Ново-Елховском месторождении. В скважинах Ромашкинского месторождения отобран нефтенасыщенный керн из верей-башкирских отложений. Нефтенасыщение пород неравномерное, в виде пятен. Нефть очень густая. В пермских отложениях нефтепроявления на Ромашкинском месторождении относятся к отложениям артинского P1ar и уфимского P1u ярусов. В отложениях артинского яруса встречены скопления густой окисленной нефти в трещиноватых доломитизированных известняках. Темно-коричневые песчаники, насыщенные битумом до 3 - 7 %, Уфимского яруса P1u в ряде пунктов выходят на поверхность. Нефть обоих ярусов густая, тяжелая, нетекучая. Подводя итог рассмотрению нефтепроявлений по разрезу можно констатировать, что на Ромашкинском месторождении, кроме горизонта DI, несомненный промышленный интерес представляют турнейские, бобриковские, тульские и верей-башкирские отложения. В стратиграфическом разрезе Ромашкинского месторождения выделяется 8 гидрогеологических комплексов:
- I - элювий кристаллического фундамента и терригенная часть девона;
- II - карбонатная толща верхнего девона и турнейского яруса нижнего карбона;
- III - терригенная часть яснополянских отложений нижнего карбона;
- IV - карбонатная толща верхневизейского подъяруса, намюрского яруса нижнего карбона и башкирского яруса среднего карбона;
- V - верейский горизонт среднего карбона;
- VI - карбонатная толща среднего и верхнего карбона;
- VII - нижнепермские отложения (условно);
- VIII - верхнепермские и четвертичные отложения.
В пределах каждого комплекса характеристика водоносных горизонтов и состав вод близки, благодаря наличию гидродинамической связи. Наблюдаемые закономерности изменения гидрогеологических условий по разрезу палеозоя обусловлены, главным образом, наличием в нем относительных водоупоров, затрудняющих активную гидродинамическую связь между отдельными комплексами. Такими водоупорами являются плотные глинистые, глинисто-карбонатные и, реже, карбонатные породы в кыновском горизонте и среднефранском подъярусе девона, в верхней части яснополянского и нижней части окского надгоризонтов нижнего карбона, в верейском горизонте среднего карбона и в уфимском ярусе верхней перми. Снизу вверх по разрезу палеозоя наблюдается уменьшение величины общей минерализации подземных вод и, соответственно, абсолютного содержания в них хлора (от 420 до 0,3 мг-экв/100 гр), магния (от 40 до 0,5 мг-экв/100 гр), брома (1060 - 0 мг/л), абсолютного и относительного содержания кальция (от 120 до 1,0 – 0,5 мг-экв/100 гр). В то же время наблюдается увеличение абсолютного и относительного содержания сульфатов (от 0,2 до 15мг-экв/100гр), относительного содержания натрия (0,6 - 30), хлоробромного коэффициента (от 152 до 475 и более), коэффициента сульфатности (от 0 до 100-7300). По преобладающим в минеральном составе компонентам смена вод происходит от хлоридно-натриевых в девонских, нижне- и среднекаменноугольных отложениях до сульфатно-натриевых в нижнепермских и до сульфатно-кальциевых, гидрокарбонатно-натриевых и гидрокарбонатно-кальциевых в верхнепермских отложениях. В составе водорастворенного газа вверх по разрезу уменьшается содержание углеводородов (от 70 - 80 % до 10 - 15 % и менее) и увеличивается содержание азота (от 15 - 50 % до 80 - 90 % и более).Содержание углеводородов и газовый фактор выше в водах пашийского и бобриковского горизонтов. Снизу вверх от терригенной толщи девона к верхнепермским и четвертичным отложениям происходит качественный и количественный рост бактериального населения вод и переход от анаэробных форм к аэробным. Наблюдается по разрезу уменьшение температуры подземных вод от 43 - 44С (пашийский горизонт) до 26С (окский надгоризонт). Причем происходит неравномерное, скачкообразное изменение геотермической ступени и градиента, что объясняется в основном различными теплопроводящими свойствами горных пород и наличием водоупоров. Наиболее водообильными являются песчаники живетскогоD2gv и франского D3f ярусов девона и бобриковского горизонта C1bb нижнего карбона. В терригенной части девона водоносные горизонты приурочены к песчано-алевролитовым пластам: DI. По минеральному составу воды характеризуются высокой минерализацией (удельный вес 1,176 – 1,93; общая минерализация – до 840 мг-экв/100гр; плотный остаток до 295 г/л), являются хлоридно-натриевыми рассолами со значительным содержанием кальция (до 120 мг-экв/100гр), из микрокомпонентов – брома (до 1060 мг/л) и с ничтожным содержанием сульфатов и гидрокарбонатов; реакция среды кислая. Динамическая (абсолютная) вязкость подземных вод в пластовых условиях составляет 16 -12,6 мПа×с. В составе водорастворенного газа преобладают углеводороды (до 70- 80 объемных), при этом превалирует метан. Газовый фактор достигает 395см/л, удельный вес газа равен 0,72 – 0,83. Содержание азота составляет 15 - 20 %. В небольших количествах содержатся также углекислый газ, водород, гелий, аргон и другие. Воды недонасыщены растворенным газом, т.к. давление насыщения (4,2 - 8,4 МПа) меньше пластового давления. Естественное движение вод терригенной части девона со средней скоростью 1,0 - 1,3см/год, по данным происходит с севера на юг и с запада на восток (общее направление с северо-запада на юго-восток). Это направление движения подтверждается изменением по территории Татарии минерального и газового состава вод, наклоном водонефтяного контакта залежей нефти Ромашкинского, Бавлинского и Туймазинского месторождений, а также данными по соседним районам. Промышленная разработка месторождения с применением внутриконтурного и законтурного заводнения привела к существенному изменению его естественного гидрогеологического режима. В процессе разработки, в связи со смешиванием и взаимодействием между собой, а также с нефтью и растворенными в ней газами, происходит изменение минерального, микрокомпонентного, газового состава, физико-химических свойств пластовых и закачиваемых вод. Вместе с закачиваемой водой в горизонт попадают ряд групп бактерий (сульфатовосстанавливающих, псевдомоны, сапрофиты и другие), среди которых особое значение приобретает деятельность бактерий, восстанавливающих сульфаты закачиваемой воды до сероводорода. В связи с закачкой в пласт больших объемов холодной воды геометрические условия его также несколько изменяются в сторону некоторого снижения пластовой температуры. По результатам исследований значение параметров нефти в пластовых условиях по залежи 1:давление насыщения 4,2 МПа, газовый фактор18,6м/т вязкость пластовой нефти 27,3 мПа×с, а среднее значение дегазирован ной нефти при 20С равно 16,3 мПа×с, плотность пластовой нефти 873кг/м. Пластовая вода представлена хлорокальциевыми рассолами, общая минерализация которых колеблется от 242,9 до 284,3 г/л. Плотность пластовых вод изменяется 1170 - 1190 кг/м3, вязкость от 1,96 до 1,97 мПа×с, объемный коэффициент равен 1.
0 комментариев