3.4 Расчет аттенюатора и согласующего устройства
С выхода пироэлектрического датчика через ФНЧ, аттенюатор и СУ напряжение поступает на АЦП. В качестве пироэлектрического датчика используется датчик фирмы Banner Engineerihg M18TUP14Q. Максимальное выходное напряжение датчика = 10 В. В качестве DD3 используется 8 битный АЦП AD7478. Микросхема работает от униполярного питания +5 В. В качестве источника опорного напряжения АЦП используют внутреннее напряжение питания, что позволяет достичь широчайший динамический диапазон входных напряжений, так как этот диапазон лежит в пределах от 0 В до Uпит. Таким образом, максимальное входное напряжение АЦП состовляет = 5 В. Тогда коэфициент ослабления аттенюатора определяется
Примем сопротивление R11 равным 10 кОм. Тогда сопротивление R10 определяется
Номинал из стандартного ряда – Е24, 10 кОм.
Поскольку минимально выходное сопротивление датчика M18TUP14Q состовляет 2,5 кОм для согласования выходного сопротивления датчика и входного сопротивления АЦП используется повторитель напряжения. АЦП имеет широкую полосу пропускания – 100 кГц при отношения сигнал/ шум = 70 дБ. Для избежания дополнительной погрешности в качестве DA3 использован прецызионный ОУ AD8628 со следующими хорактеристиками:
– коэффициент усиления без цепи обратной связи 1,7 В/мкВ;
– коэффициент ослабления синфазного сигнала 120 дБ;
– начальное смещение 5 мВ;
– начальный ток смещения 100 пА;
– спектральная плотность шума ;
– скорость наростания напряжения 1 В/мкс;
– частота единичного усиления 2,5 МГц;
– напряжение питания +5 В.
ЛИТЕРАТУРА
1. Преображенский В. П. Теплотехнические измерения и приборы: Учебник для вузов по специальности «Автоматизация теплоэнергетических процессов». – 3-е изд., перераб. – Москва: «Энергия», 1978. – 704 с.
2. Чистяков С. Ф., Радун Д. В. Теплотехнические измерения и приборы. М.: Высшая школа, 1972, - 392 с.
3. http://detect-ufo.narod.ru/pribor/detect_ir/index.html
4. http://www.murata.com/
5. http://www.newic.ru/catalog/sensors/temperature/
Приложение А
ТЕХНИЧЕСКОЕ ЗАДАНИЕ
на курсовой проект
“ Устройство для измерения температуры в удаленных точках ”
1 Наименование работы
Устройство для измерения температуры в удаленных точках.
2 Основания для выполнения
Работа проводится на основании задания на курсовой проект в соответствии с вариантом 32.
3 Цель и актуальность работы
Целью работы является разработка устройства для измерения температуры в удаленных точках, функциональной и принципиальной схемы, расчет его основных узлов, овладение методикой проектирования электронной аппаратуры и правилами оформления технической документации на проектируемое устройство.
4. Основные технические характеристики устройства для измерения температуры в удаленных точках
4.2.1 Диапазон измеряемых температур 0…300 °С.
4.2.2 Разрешающая способность – 2 °С.
4.2.3 Погрешность измерения – 1 %.
4.2.4 Оптическое разрешение – 14:1.
4.2.5 Время установления – не более 500 мс.
4.2.6 Диапазон ИК волн – 8…14 нм.
4.2.7 Источник питания – 4,5 В.
4.2.8 Зарядное устройство – 12 В, 300 мА.
4.2.9 Тип индикатора – жидкокристаллический.
5 Требования к технологичности
Устройство должно быть выполнено на элементной базе широкого применения и содержать минимум специализированных элементов.
6 Требования к безопасности
В отношении безопасности работающее устройство должно отвечать требованиям ГОСТ 12.2.006 и обеспечивать электробезопасность, пожаробезопасность, механическую прочность и другие требования при монтаже, эксплуатации, обслуживании и ремонте.
7 Экономические показатели
Разрабатываемое устройство должно быть эффективно в отношении его производства с экономической точки зрения. Схемные решения должны иметь минимальную стоимость реализации.
8 Требования к уровню унификации
В разрабатываемой конструкции необходимо стремится к максимальному использованию стандартных компонентов и унифицированных изделий, а также заимствованных сборочных единиц и деталей.
Приложение Б
Устройство для измерения температуры в удаленных точках
Схема электрическая функциональная
Приложение В
Устройство для измерения температуры в удаленных точках
Перечень элементов
Зона | Поз. обозначение | Наименование | Кол. | Примечание |
Конденсатори К10-17 ОЖ0.460.107ТУ | ||||
Конденсатори К50-35 ОЖ0.464.214ТУ | ||||
C1, C2 | К10-17-П33- 3,3 нФ±10%-25-В | 2 | ||
С3 | К10-17-П33- 220 нФ±10%-25-В | 1 | ||
С4 | К10-17-П33- 10 нФ±10%-25-В | 1 | ||
С5 | К10-17-П33- 220 нФ±10%-25-В | 1 | ||
С6 | К10-17-П33- 100 нФ±10%-25-В | 1 | ||
С7 | К10-17-П33- 10 нФ±10%-25-В | 1 | ||
С8 | К50-35-16В- 220 мкФ-И-В-А | 1 | ||
С9 | К10-17-П33- 220 нФ±10%-25-В | 1 | ||
С10, С11 | К10-17-П33- 30 пФ±10%-25-В | 2 | ||
С12 | К50-35-16В- 220 мкФ-И-В-А | 1 | ||
С13, С14 | К10-17-П33- 30 пФ±10%-25-В | 2 | ||
С15…С17 | К50-35-16В- 47 мкФ-И-В-А | 3 | ||
С18…С23 | К10-17-П33- 220 нФ±10%-25-В | 6 | ||
Микросхемы | ||||
DA1 | M18TUP14Q | 1 | ||
DA2 | MC78L05 | 1 | ||
DA3 | OP262 | 1 | ||
DA4 | AD8628 | 1 | ||
DA5 | LM317T | 1 | ||
DA6 | B44940G | 1 | ||
DA7 | RW05033S | 1 | ||
DA8 | RW0505S | 1 | ||
DA9 | RW0512S | 1 | ||
DD1 | ATiny13 | 1 | ||
DD2 | MAX3421E | 1 | ||
DD3 | AD7478 | 1 |
VD7, VD8 | 1N4007 | 2 | ||
VD9 | АЛС307 | 1 | ||
Транзисторы | ||||
VT1 | KT829 | 1 | ||
VT2, VT3 | KT503 | 2 | ||
Резонаторы | ||||
Q1, Q2 | KXO-85 | 2 | ||
Приложение Г
Устройство для измерения температуры в удаленных точках
Схема электрическая принципиальная
... этой модели одним из основных параметров является непрерывный контроль температуры металла и внутренней поверхности огнеупорной кладки. Измерение температуры свода электросталеплавильной печи Куполообразный водохлаждаемый свод несет наибольшую функциональную нагрузку. В своде предусмотрены технологические отверстия для отвода плавильных газов, подачи сыпучих, ввода трех электродов и отбора ...
... и тем ближе к режущей кромке располагается ее максимум. С уменьшением длины контакта стружки с передней поверхностью средняя температура также снижается, но максимум температуры удаляется от режущей кромки. При скоростной обработке температура в зоне резания доходит до 800° С, а на поверхности трения по передней грани достигает даже 1200° Си выше. Низкая теплопроводность твердых сплавов и ...
... тренировок, Шведы являются признанными мировыми экспертами в пожаротушении. Многие противопожарные службы мира сегодня используют Шведский метод подготовки. В последние 10 лет в Швеции появились огневые тренажеры для подготовки ствольщиков, работающие на газовом топливе (см. рисунок 4). Их недостатком является условный характер тренировки: оператор тренажера управляет интенсивностью подачи и ...
... в любительских и улучшенных промышленных радиоприёмниках автотрансформаторы широкого распространения не получили. В основном они нашли применение в дешевых массовых промышленных приемниках, а также в качестве устройств для поддержания необходимого напряжения при питании радиоприемников от осветительной сети, напряжение которой подвержено колебаниям. В данном устройстве представлен трансформатор ...
0 комментариев