2. Часовая производительность насоса должна быть выбрана в зависимости от продолжительности работы водоподъемника и определяется по формуле
Qч. насоса = ,
где Т - продолжительность работы насосной станции, ч
(по исходным данным Т = 13 часов).
Тогда Q ч. насоса = = 8,31 м3/ч.
Секундная производительность насоса определяется по формуле
Q с. насоса = Q ч насоса / 3600.
Тогда
Q с насоса = = 0,0023 м3/с = 2,3 л/с
3. Диаметр трубопровода для всасывающей (l1иl2) и нагнетательной (l3иl4) линии (условно, ввиду малого расстояния, принимаем их равными по диаметру) определяется как
d насоса = 1,13 х . Тогда d насоса = 1,13 х = 0,054 м.
Принимаем диаметр трубопровода всасывающей (l1иl2) и нагнетательной (l3иl4) линии d насоса = 75 мм.
После определения часовой производительности насоса должно соблюдаться условие Д Q ч. насоса
4. Напор, создаваемый насосом. Определяется по формуле
Н насоса Нвс + Нн + Нб +Sh, (6)
где Н насоса - напор, создаваемый насосом, м;
Нвс - высота всасывания, м;
Нн - высота нагнетания, м;
Нб - высота бака, м;
Sh - сумма потерь напора на всасывающей и нагнетательной линиях, м;
Sh = Sh′+Sh″,
где Sh′ - сумма потерь напора по длине всасывающего и нагнетательного трубопровода, м, Sh″ - местные потери напора во всасывающем и нагнетательном трубопроводах, м.
Высота нагнетания водонапорного бака (резервуара) выбирается из расчета
Н н Н свн +Sh1 ± Н г, (7)
где Н свн - величина свободного напора, м:
Нг - геометрическая разность нивелирных отметок, м;
Sh1 - сумма потерь напора в разводящем трубопроводе, м;
Sh1 =Sh′1+Sh″1
где Sh′1 - сумма потерь напора по длине разводящего трубопровода, м;
Sh″1 - сумма местных потерь напора в разводящем трубопровода, м.
Местные потери напора в сети составляют 5…10% от величины потерь на трение по длине (эти данные используются в практических расчетах), а потери напора по длине определяются по формуле
hj = i ∙ lj (8)
где hj - потери напора на конкретном участке, м;
lj- длина конкретного участка, м;
i - гидравлический уклон в метрах (потери напора на 1 м длины трубопровода).
Данные по i выбираем из таблицы.
Выбранные данные вместе с рассчитанным (принятым) диаметром трубопроводов и секундным расходом заносим в таблицу 2.
Таблица 2 - Значения диаметров, секундного расхода, 100 j и j для трубопроводов
Трубопроводы | Диаметр трубопровода d мм | Секундный расход Qc max л/с | 100 i, м | i, м |
l5 | 75 | 3 | 1,32 | 0,0132 |
l6 | 50 | 0,75 | 0,72 | 0,0072 |
l7 | 50 | 0,75 | 0,72 | 0,0072 |
l8 | 50 | 0,75 | 0,72 | 0,0072 |
l9 | 50 | 0,75 | 0,72 | 0,0072 |
l1, 12, l3, l4 | 75 | 2,3 | 0,74 | 0,0074 |
Тогда величина потерь напора по длине определяется по формуле (8), а местные потери напора в данном расчете принимаются 10% от потерь по длине.
h5 = 0,0132 х 150 = 1,98 м и 10% равно 0, 198 м.
h6 = 0,0072 х 135 = 0,972 м и 10% равно 0,0972 м.
h7 = 0,0072 х 100 = 0,72 м и 10% равно 0,072 м.
h8 = 0,0072 х 110 = 0,792 м и 10% равно 0,0792 м.
h9 = 0,0072 х 125 = 0,9 м и 10% равно 0,09 м.
Тогда сумма потерь напора в трубопроводах для:
l5 будет равна h5 = 1,98 + 0, 198 = 2,18 м;
l6будет равна h6 = 0,972 + 0,0972 = 1,0692 м;
l7будет равна h7 = 0,72 + 0,072 = 0,792 м;
l8 будет равна h8 = 0,792 + 0,0792 = 0,8712 м
l9 будет равна h8 = 0,9 + 0,009 = 0,99 м.
В данном примере потери в разветвленной сети на шестом участке (l6), где первый потребитель (П1).
Тогда сумма потерь напора в разводящем трубопроводе определяется из выражения:
Sh1 = h5 + h6 = 2,18 + 1,07 = 3,25 м.
Принимаем Sh1 = 3,3 м. Далее по формуле (7) находим высоту нагнетания (водонапорного бака, резервуара).
Нн = 4,8 + 3,3 - 0 = 8,1 м.
Это значит, что дно резервуара должно быть на высоте 8,1 м.
Далее общая длина lобщ. всасывающего l1, l2 и нагнетательного l3, l4трубопроводов определяется по формуле
lобщ = l1+ l2 + l3 + l4.
Тогда
lобщ = 5,5 + 68 + 73 + 8,1 = 154,6 м.
Тогда величина потерь напора на всасывающем и нагнетательном трубопроводах по длине и местные потери определяются как:
hl общ = 0,0074 х 154,6 = 1,14 м и 10% равно 0,144 м.
Тогда Sh = 1,14 + 0,114 = 1,25 м.
Далее по формуле определяем напор, который должен создать насос
Н насоса = 5,5 + 8,1 + 4 + 1,25 = 18,85 м.
Имея расчетные данные: Н насоса = 18,85 м; Qч насоса = 8,31 м3/ч; Qс насоса=2,3 л/с производим энергетический расчет.
Расчетная мощность приводного двигателя к насосу определяется по формуле
Ррасч. =
где Ррасч. - расчетная мощность приводного двигателя, кВт;
- плотность воды, кг/м3;
g - ускорение свободного падения, м/с2;
Qс насоса - подача насоса, м3/с; Н насоса - полный напор насоса, м;
насоса - коэффициент полезного действия насоса;
передачи - коэффициент полезного действия передачи.
= 1000 кг/м3; насоса = 0,4…0,64; передачи = 1.
Используя расчетные значения Qс насоса, Н насоса и принимая насоса = 0,4 определяем расчетную мощность
Ррасч. = = 1,1 кВт.
(Число 1000 в знаменателе - переводной коэффициент для получения результата в кВт).
С учетом коэффициента запаса, мощность двигателя определяется по формуле:
Рдв. = Ррасч. х a,
где a - коэффициент запаса мощности; a = 1,1…2,0; принимаем a = 2
Рдв - мощность двигателя с учетом всевозможных перегрузок, кВт.
Тогда Рдв. = 1,1 х 2 = 2,2 кВт.
Далее с учетом всех параметров выбираем насос. Это центробежный насос марки 2К-6А, имеющий Q насоса = 20 м3/ч, n = 2900 м-1, = 3,2 кВт
График работы оборудования и установленных мощностей
Исходные данные:
Таблица 3 - Техническая характеристика оборудования, установленного в технологической линии водоснабжения свинарников
Оборудование, марка | Мощность электродвигателей р, кВт |
Центробежный насос 2К-6А Освещение свинарника №1 Освещение свинарника №2 Освещение свинарника №3 Освещение свинарника №4 | 3,2 8 8 8 8 |
Таблица 4 - Время работы основного оборудования
Оборудование, марка | Время работы оборудования (часы, минуты) |
Центробежный насос 2К-6А Освещение свинарника №1 Освещение свинарника №2 Освещение свинарника №3 Освещение свинарника №4 | 6ч…19ч 5ч30мин…9ч; 15ч…21ч 5ч30мин…9ч; 15ч…21ч 5ч30мин…9ч; 15ч…21ч 5ч30мин…9ч; 15ч…21ч |
Построение графика работы оборудования
Порядок построения графика следующий (рис.11):
Строят оси координат
По оси абсцисс обозначаем время суток Тсуток в часах или минутах (от 0 до 24).
Слева оси ординат в четырех столбцах обозначаем:
а) Технологические операции в примерной последовательности одна за другой.
б) Марка машины, выполняющей ту или другую технологическую операцию.
в) Время работы t машины в течение суток в часах или минутах.
г) Установленная мощность Р электродвигателей на машинах и освещение в кВт.
Обозначение позиций | Технологические операции | Марка машины | Общее время работы t, ч. и мин. | Мощность Р, кВт |
V | Центробежный насос | 2К-6А | 13 часов | 3,2 |
IV III II I | Освещение свинарника №4 Освещение свинарника №3 Освещение свинарника №2 Освещение свинарника №1 | лампы лампы лампы лампы | 9 часов 30 минут 9 часов 30 минут 9 часов 30 минут 9 часов 30 минут | 8 8 8 8 |
Рисунок 11 - График работы оборудования
Теперь строго в масштабе параллельно осе абсцисс наносим против технологически операций линии, длина которых (в масштабе) соответствует времени работы машины, а положение их (линий) относительно оси абсцисс показывает: в какое время суток выполняется данная технологическая операция.
По графику сразу видно технологию производства, время работы машин, в какое время и последовательность их включения и выключения, сколько одновременно работает машин, какие машины и далее.
Построение графика установленных мощностей
Руководствуясь графиком работы оборудования (рис.11) и исходными данными строится график установленных мощностей оборудования (рис.12). Порядок построения графика следующий:
... 12,9 6088090 Поросята на доращивании 3994 4 5831240 20 29156200 12 17493720 Откормочный молодняк 6463 6,5 1470332,5 97 22882251 32,3 76195538 Взрослые на Откорме 65 0,13 3084,25 1,3 30842,5 0,72 17082 13. Разработка генплана свиноводческого предприятия с законченным оборотом стада Архитектурно-строительные решения свиноводческих зданий должны обеспечивать оптимальные ...
... основе его широкой индустриализации. Современное развитие сельскохозяйственного производства предъявляет качественно новые требования к вопросам технологии содержания животных и птицы, машинам и оборудованию для комплексной механизации и автоматизации производственных процессов, объемно-планировочным и конструктивным решениям зданий и сооружений, на основе которых должны создаваться прогрес ...
... нормативный коэффициент эффективности; К - объем капитальных вложений, руб. на 1 ц. 9.981 + 0.125 ∙ 893.75 = минимум 121.69975 4. Охрана окружающей среды Проектирование ферм и комплексов должно производиться с учётом охраны окружающей среды. Участок располагают не ближе 200 м от транспортных магистралей. Участок для строительства должен размещаться с подветренной стороны относительно ...
... рационов и норм кормления, обеспечивающих максимальный прирост живой массы в течение всего цикла и достижение заданной живой массы к моменту сдачи скота на мясокомбинат. Производство говядины на комплексах включает три последовательные стадии: выращивание, доращивание и откорм. В зависимости от климатических условий комплексы могут быть закрытого и комбинированного типов или иметь вид откормочных ...
0 комментариев