1. Обоснование тягово–энергетической концепции трактора
1.1 Исследование путей повышения производительности сельскохозяйственных машинно-тракторных агрегатов
Проведенные авторами исследования путей повышения производительности сельскохозяйственных машинно-тракторных агрегатов позволило изучить причины отставания роста производительности агрегатов от роста мощности тракторных двигателей. Основное внимание уделено теоретическим изысканиям для подхода к разработке фундаментальных основ совершенствования МТА. На основе анализа потенциальной тяговой характеристики трактора (зависимость тяговой мощности трактора от его тягового усилия) сделан вывод о том, что режиму работы трактора при максимальной тяговой мощности соответствуют определенные значения тягового усилия и действительной скорости движения , которые взаимосвязаны. Поэтому, по известной практике, возрастающую тяговую мощность трактора тягача, при повышении его энергонасыщенности, можно реализовать увеличением тягового усилия трактора для агрегатирования широкозахватных сельскохозяйственных машин или для ускорения движения МТА.
В первом случае удается повысить производительность МТА, но с условием сохранения оптимального коэффициента сцепления , что сопровождается увеличением сцепного веса . Однако увеличение массы сельскохозяйственного трактора повышает расход энергии на его перемещение, который уже сегодня составляет, по отдельным источникам, до 40% номинальной мощности двигателя. При этом темп прироста производительности МТА за счет увеличения ширины захвата агрегата отстает от темпа увеличения мощности
Например, при увеличении мощности двигателя трактора Т-150М в сравнении с трактором Т-150 на 26,5%, производительность МТА (при постоянной рабочей скорости) возросла только на 15...18 % (в зависимости от технологической операции). При этом масса трактора увеличилась на 12%.
Следствием увеличения массы трактора является уплотнение почвы, в том числе и в подпахотном слое, на величину которого оказывает влияние не только удельное давление движителей, но и общая масса трактора. Это не только существенно нарушает физико-механические качества почвы и приводит к снижению урожайности сельскохозяйственных культур от 5 до 50%, но и увеличивает энергозатраты на дополнительное рыхление почвы.
Поэтому авторы пришли к мнению, что увеличение тягового усилия трактора, с точки зрения формирования энергосберегающего МТА, является неперспективным, так как требует увеличения веса трактора и уплотняет почву.
Другим вариантом повышения тяговой мощности трактора при неизменной оптимальной силе тяги является увеличение рабочей скорости МТА. Для тракторов тягачей отношение мощности двигателя, преобразуемой в тяговую мощность трактора, к произведению массы трактора на оптимальную действительную скорость движения есть величина постоянная. Поэтому повышение мощности двигателя пропорционально увеличению рабочей скорости трактора тягача, а следовательно, и производительности МТА. Однако по мере роста скорости сельскохозяйственных тракторов происходит уменьшение величины оптимального значения коэффициента использования сцепной массы трактора и максимального значения тягового КПД, т.е. нарушается прямая пропорциональность между оптимальной скоростью трактора и максимальной тяговой мощностью.
С увеличением скорости движения МТА снижается КПД ходовой системы и в связи с этим увеличиваются энергозатраты на самопередвижение трактора и преодоление буксования, т.е. мощность двигателя, преобразуемая в тяговую мощность трактора, увеличивается быстрее, чем растет его рабочая скорость.
Это значит, что по мере увеличения энергонасыщенности трактора разность между приростом мощности, подведенной к движителям, и приростом скорости будет постоянно возрастать.
Авторами был сделан вывод о том, что увеличение рабочей скорости МТА (при увеличении энергонасыщенности трактора) приводит к снижению максимального значения КПД ходовой системы трактора с одновременным снижением оптимального значения тягового усилия. Так увеличение мощности двигателя с 27 кВт до 80 кВт для тракторов типа МТЗ в случае использования ее только через тяговую мощность максимальное значение КПД ходовой системы уменьшается до 20%, а оптимальное тяговое усилие - до 40% при работе на почвенном фоне-стерне. Для того чтобы это не происходило, необходимо уменьшить массу трактора, либо обеспечить независимость коэффициента самоперекатывания трактора от скорости движения. Все это является одной из причин снижения темпа увеличения его рабочей скорости с одновременным увеличением энергозатрат на единицу обработанной площади.
Кроме того, рост рабочих скоростей МТА приводит к увеличению степени неравномерности момента сопротивления на входе в двигатель на тракторе с механической ступенчатой трансмиссией. Источником колебаний момента сопротивления на входе в двигатель является изменение сопротивления рабочих органов МТА, периодическое изменение нагрузок в зубчатых зацеплениях трансмиссии трактора. При этом существенное влияние в формировании колебаний момента сопротивления играет изменение газовых и инерционных сил, возникающих в цилиндрах двигателя.
Колебания момента сопротивления на входе в двигатель, из-за нелинейности регуляторной характеристики, приводят в эксплуатации к недоиспользованию мощности дизеля до 20 %, а рассогласование систем топливо- и воздухоподачи, особенно у двигателей с ГТН и приводят к увеличению расхода топлива.
Существующая тенденция к увеличению тягового усилия и составлению широкозахватных и скоростных МТА в сочетании с увеличением веса трактора в условиях средних размеров полей Центральной части Российской Федерации приводит к непропорциональному росту производительности и дополнительному росту энергозатрат на единицу выполненной работы, из-за увеличения разворотных зон и работы МТА в режиме разгон-торможение на коротких расстояниях.
На основании проведенного анализа, авторами был сделан вывод, что формирование энергосберегающего МТА на базе энергонасыщенного трактора тягача при увеличении силы тяги или рабочей скорости приводит с одной стороны к увеличению массы сельскохозяйственного трактора, с другой стороны снижает его тяговый КПД. Все это является одной из причин снижения темпа увеличения ширины захвата МТА и его рабочей скорости относительно увеличения мощности тракторного двигателя с одновременным увеличением энергозатрат на единицу обработанной площади, поэтому эти способы являются неперспективными.
Повышение энергонасыщенности тракторов и развитие машинных технологий возделывания сельскохозяйственных культур привело к опережению роста массы технологической части МТА относительно роста массы трактора. С применением комбинированных агрегатов масса технологической части агрегата сравнялась с массой энергетической части, и можно прогнозировать, что в будущем масса технологической части агрегата будет превосходить массу энергетической.
Анализ технологических, агротехнических и других факторов, определяющих концепцию трактора, показал, что их требования противоречивы, поэтому стремление повысить одни свойства приводит к снижению других. Так основные требования - повышение производительности МТА, энерговооруженности механизаторов и сокращение их численности - могут быть реализованы только в результате повышения мощности двигателя и увеличения тягового усилия, т. е. веса трактора. Химизация и применение перспективных широкозахватных и комбинированных агрегатов также ведут к увеличению веса агрегата и нагрузки на колеса трактора. Проявляющаяся тенденция к увеличению веса технологической части агрегата повышает давление движителей тракторов тяговой концепции на почву, что ухудшает агротехнические свойства МТА с навесными и полунавесными орудиями, требует применения широких и спаренных колес, не вписывающихся в междурядье пропашных культур.
Противоречие требований агротехники и развития функциональных свойств трактора тяговой концепции достигло критического состояния и создает объективные трудности в дальнейшем совершенствовании их параметров, так как нельзя поступиться одними требованиями в пользу других.
Дальнейшее повышение мощности трактора класса 5 колесной формулы 4К4 в рамках тяговой концепции невозможно, так как требует увеличения его эксплуатационного веса, в то время как уже сейчас нагрузка на почву достигла предельного значения. Его осевая нагрузка превышает регламентируемую стандартами даже на дорогу с твердым покрытием.
Противоречие между необходимостью снижения веса трактора и сохранением тягово-сцепных свойств можно устранить, если в качестве сцепного использовать вес всего агрегата, включая технологическую часть, а не только вес трактора.
Радикальный способ увеличения относительной доли сцепного веса в агрегате, или активизации веса МТА, - оснащение его технологической части ведущими колесами, приводимыми от системы отбора мощности или гидравлической системы трактора. В этом случае только часть мощности двигателя будет реализоваться через ходовую систему трактора и его удельная материалоемкость может быть снижена. При использовании таких тракторов с сельскохозяйственными машинами небольшой удельной материалоемкости, целесообразно дополнять их промежуточными тележками с ведущими колесами, которую при необходимости можно балластировать. В зависимости от соотношения сцепных весов трактора и тележки активно приводные колеса последней могут обеспечить прирост тягового усилия от 50 до 100 %. Энергонасыщенность тракторов в таком агрегате можно повысить в 1,5...2 раза в сравнении с современными тракторами тяговой концепции. Столь существенное изменение энергонасыщенности приводит к перерастанию трактора-тягача в тягово-энергетическое средство и к созданию на его основе тягово-приводных машинно-тракторных агрегатов.
Колесный трактор тягово-энергетической концепции - это трактор такой энергонасыщенности, при которой мощность двигателя не может быть полностью реализована через его ходовую систему в тяговое усилие при работе в диапазоне достигнутого интервала рабочих (технологических) скоростей МТА даже при полном балластировании трактора.
Анализ тягово-приводных МТА показывает, что "избыточная" часть мощности двигателя трактора тягово-энергетической концепции может быть использована по следующим вариантам.
Первому - для уменьшения удельного тягового сопротивления сельхозмашин путем привода рабочих органов не от ходовых колес сельхозмашины, а от ВОМ или гидравлической системы трактора. Тогда при той же тяговой мощности и рабочей скорости трактора возможно увеличение ширины захвата одно-операционной сельхозмашины, или формирование комбинированного агрегата, способного выполнять одновременно не одну, а несколько технологических операций одновременно при снижении удельной энергоемкости работ. Применение и дальнейшая разработка комбинированных агрегатов является общемировой тенденцией в сельскохозяйственном машиностроении.
Второму - для привода движителей сельхозмашин (технологических модулей) и рабочих органов-движителей. В этом случае используется вся масса агрегата для создания тягового усилия и за счет этого происходит увеличение производительности с одновременным рассредоточением сцепной массы по площади поля (по движителям), что снизит удельную энергоемкость работ с одновременным снижением уплотнения почвы, особенно в подпахотном горизонте.
Для тягово-приводного МТА на базе энергонасыщенного трактора, тяговую мощность передаваемую к сельхозмашине можно представить как сумму тяговых мощностей трактора , движителей сельхозмашин (технологических модулей) и рабочих органов – движителей . Степень повышения тяговой мощности, передаваемой к сельхозмашине, будет изменяться в зависимости от компоновки МТА и конструкции движителей и режима эксплуатации.
Снижение удельного тягового сопротивление, за счет применения ведущих колес на сельскохозяйственной машине, рабочих органов-движетелей и активных рабочих органов позволяет формировать перспективные комбинированные МТА на базе энергонасыщенных тракторов меньшего тягового класса, которые в максимальном количестве используются в сельскохозяйственном производстве Российской Федерации. Использование массы всего МТА для создания тягового усилия, позволит снизить затраты на самопередвижение трактора и уплотнение почвы с одновременным увеличением производительности МТА и снижением удельной энергоемкости работ. Данное направление позволит значительно улучшить эксплуатационные характеристики основных классов тракторов 1,4 и 2 в условиях сельскохозяйственного производства Российской Федерации.
С точки зрения удельных энергозатрат, увеличения ширины захвата тягово-приводного МТА за счет уменьшения удельного сопротивления путем привода рабочих органов не от ходовых колес сельхозмашины, а от ВОМ трактора, целесообразно, если , где и - максимальный тяговый КПД трактора и КПД привода рабочих органов сельхозмашины, включая и трансмиссию ВОМ. Если же , то темп увеличения ширины захвата агрегата будет меньше темпа увеличения мощности двигателя, что приведет к увеличению энергозатрат.
Повышение производительности МТА путем увеличения ширины захвата за счет использования технологических модулей с приводом движителей сельхозмашин или движителей технологических модулей имеет ограничения. Как и в случае увеличения рабочей скорости МТА, это направление может быть принято только в определенном диапазоне увеличения для тракторов класса 1,4…2 в связи с рельефом и нарезкой полевых севооборотов. Для увеличения диапазона производительности необходимо стремится к повышению тягового КПД движителей технологических модулей, особенно комбинированных сельскохозяйственных машин, в том числе и привода рабочих органов.
В процессе реализации идеи использования технологической части агрегата в качестве активного сцепного веса с приводом на ее колеса возникают вопросы по выбору параметров, основными из которых являютсяэнергонасыщенность трактора и соотношение между массами трактора и технологической части. Суть модульной системы агрегатирования в том, что трактор высокой энергонасыщенности комплектуют с технологическим модулем, легко соединяемым и отсоединяемым от него.
Технологический модуль - это приспособление в виде тележки-сцепки с приводом колес от двигателя или комбинированная сельскохозяйственная машина с ведущими опорными колесами или активными рабочими органами, позволяющая дополнительно использовать в технологическом процессе мощность двигателя трактора тягово-энергетической концепции.
При модульном построении агрегата устраняется требование соответствия между весом трактора тягово-энергетической концепции и мощностью двигателя, свойственное тяговой концепции трактора. Технологическую и энергетическую части МТА можно совершенствовать в соответствии с требованиями, предъявляемыми к каждой из них, избегая противоречия между ними и улучшая общие показатели трактора и МТА.
По мере развития и совершенствования технологических процессов в сельском хозяйстве масса технологической части растет, потому что с ней в определенной взаимосвязи находится производительность. Чем больше масса, тем выше производительность и количество одновременно выполняемых операций, т.е. комбинированность сельскохозяйственной машины.
При модульном построении агрегата можно "перемещать" металл из непроизводительной части агрегата, которой является трактор, в производительную технологическую часть при сохранении баланса массы, обеспечивающей необходимые тяговые свойства МТА. В то время как при тяговой концепции трактора рост массы технологической части неизменно вызывает увеличение массы трактора, а следовательно, и массы всего МТА
При модульной системе построения агрегата теоретически можно пропорционально повышать массу технологической части агрегата и снижать массу энергетической части при одновременном повышении мощности двигателя. Практически вес и энергонасыщенность трактора тягово-энергетической концепции, с одной стороны, и вес технологических модулей, с другой стороны, следует выбирать такими, чтобы отдельно взятый трактор и трактор в сочетании с технологическим модулем соответствовали по весу тракторам смежных тяговых классов по действующему в нашей стране типажу.
Такой подход к созданию модульных энерготехнологических средств позволяет использовать трактор тягово-энергетической концепции или в сочетании с тягово-прицепным модулем в агрегате с имеющимся шлейфом сельскохозяйственных машин, предназначенных для работы с серийно выпускаемыми тракторами двух смежных тяговых классов. Такой трактор становится более универсальным, а скомплектованный на его базе МТА – высокопроизводительным.
Активный привод колес технологической части МТА существенно влияет на формирование энергетического баланса и тягового КПД агрегата. Характер этого влияния зависит от типа активного привода колес технологического модуля и типа ходовой системы трактора. Потери на качение тягово-приводного МТА снижаются вследствие двух факторов: уменьшения эксплуатационного веса трактора и передачи привода на опорные колеса технологической части агрегата от двигателя. Последнее объясняется тем, что шины ведущих колес имеют больший диаметр и меньшее давление воздуха в сравнении с шинами опорных колес. Дополнительное снижение буксования движителей МТА возможно при совпадении колеи колесного трактора и колеи технологического модуля.
Потери в трансмиссии МТА несколько возрастут в случае применения механического активного привода колес технологической части агрегата. При большой рассредоточенности ведущих колес на широкозахватном агрегате, а также для автоматического бесступенчатого регулирования кинематического согласования с движителями трактора тягово-энергетической концепции в качестве активного привода колес целесообразен бесступенчатый привод гидрообъемного или электрического типа. Использование таких приводов с более низким, чем у механических трансмиссий, КПД приводит к снижению КПД трансмиссии МТА в целом и к увеличению потерь энергии. Однако удобство гидрообъемных трансмиссий расширяет их применение в сельскохозяйственном машиностроении. Значительное количество сельскохозяйственных машин и их рабочие органы приводятся гидроприводом.
Одним из возможных элементов тягово-приводного агрегата может быть предложен промежуточный тягово-прицепной модуль, который состоит из ведущего моста и универсального гидрофицированного навесного оборудования для агрегатирования полунавесных сельскохозяйственных машин, комбайнов и прицепов.
Перспективным элементом тягово-приводного МТА является комбинированный агрегат на базе технологического модуля с активным приводом опорных колес от двигателя. Комбинированные агрегаты стали выпускать в конце шестидесятых годов прошлого века. За прошедшие годы они получили широкое применение в сельскохозяйственном производстве как у нас в стране, так и за рубежом.
Комбинированные агрегаты представляют собой комплекс технологически согласованных рабочих органов установленных на базовый модуль или на одну машину. Поэтому комбинированные агрегаты могут одновременно выполнять сразу несколько технологических операций, чем они в свою очередь отличаются от других простых сельскохозяйственных машин. Комбинированные агрегаты пользуются преимуществом еще и потому, что они уменьшают количество проходов тракторов и сельскохозяйственных машин по полю для выполнения технологических операций, что, в конечном счете, уменьшает уплотнение почвы и ее удельное сопротивление, при этом уменьшаются энергетические затраты.
Недостатком имеющихся комбинированных почвообрабатывающих агрегатов являются значительные вес и тяговое сопротивление, отсутствие технологической универсальности. Комбинированный почвообрабатывающий агрегат может применяться преимущественно для основной или для предпосевной обработки почвы и в основном предназначен для тракторов класс 3 с номинальным тяговым усилием 30 кН. Для тракторов класса 1,4…2 с номинальным тяговым усилием 14…20 кН практически не предусмотрены комбинированные агрегаты в связи с большим тяговым сопротивлением и малой шириной захвата. Часто отсутствуют рабочие органы активного типа, подрезающие корневую систему сорных растений. Для создания мелкокомковой структуры отдельными агрегатами необходимо проходить несколько раз.
Комплектование комбинированного агрегата на базе технологического модуля с активным приводом опорных колес от двигателя путем установки сменных блоков рабочих органов на базовом тяговом модуле позволит сделать такой агрегат универсальным, более производительным при использовании его увеличенной массы, как сцепной. Такой агрегат может быть использован как для основной, так и предпосевной обработки почвы, а также осенью после уборки зерновых культур для подрезания корневой системы и заделки в почву пожнивных остатков.
Комплектование машинно-тракторных агрегатов на базе энергонасыщенного трактора как отдельно, так и в сочетании с тягово-прицепным модулем, или комбинированным агрегатом на базе технологического модуля с активным приводом опорных колес от двигателя, делает трактор тягово-энергетической концепции универсальным. При этом используется шлейф сельскохозяйственных машин, предназначенных для работы с серийно выпускаемыми тракторами двух смежных тяговых классов, а возможность изменения массы трактора в соответствии с требуемым тяговым усилием, за счет применения тягово-прицепного модуля, исключает необходимость вынужденного перемещения по полю излишней массы трактора, дополнительных затрат энергии и топлива.
Характерной особенностью трактора тягово-энергетической концепции в сравнении с тракторами тяговой концепции является его универсальность, т. е. его можно использовать в разных тяговых классах с различным шлейфом машин. Технологические модули могут быть не только тягово-прицепными, но и другого назначения, например пропашные. Их разработка в перспективе еще больше расширит диапазон технологической универсальности трактора новой технической концепции, позволит расширить технологические возможности и повысить производительность МТА на базе тракторов класса 1,4…2.
Преимущества тракторов тягово-энергетической концепции и МТА на их основе следующие:
-производительность возрастает практически пропорционально повышению единичной мощности;
-универсальность МТА на базе тракторов тягово-энергетической концепции выше благодаря технологическому маневрированию использованием технологического модуля в составе многофункционального МТА;
-снижение вредного воздействия движителей на почву объясняется увеличением числа ведущих осей и колес МТА на базе тракторов тягово-энергетической концепции, что позволяет работать с более низким давлением воздуха в шинах и меньшей осевой нагрузкой;
-материалоемкость МТА на базе тракторов тягово-энергетической концепции ниже, поскольку в образовании тягового усилия участвует вес всего агрегата, а не только трактора;
-снижение расхода топлива обусловлено изменяемостью сцепного веса, повышением степени загрузки в течение года и улучшением тягово-сцепных свойств по сравнению с тракторами тяговой концепции;
-более высокая приспособленность тракторов, особенно широкоиспользуемых класса 1,4…2, к реализации прогрессивных технологий и составлению комбинированных агрегатов благодаря увеличению нагрузочной способности ходовой системы.
... заработной платы; 5. превышение темпов роста производительности труда над темпами роста заработной платы. [1,77-80] 2. Анализ производительности труда и его оплаты на предприятии ОАО «Восход» 2.1 Общая характеристика предприятия Открытое акционерное общество ОАО «Восход» Октябрьского района Пермского края создано по соглашению между бывшими работниками совхоза им. Восход в порядке ...
... 137 дней. По результатам проведенной оценки финансового состояния можно сделать вывод, что перед предприятием стоит проблема выживания. Глава 3. Исследование путей повышения производительности труда 3.1 Резервы и факторы роста производительности труда на предприятии При анализе и планировании производительности труда важнейшей задачей является выявление и использование резервов ее роста ...
... ветви кустарника, нож их разрезает. По мере износа лезвия нож разворачивают на 180°. Для этого нож снабжен двумя лезвиями. 88. Устройство и технологический процесс туковых сеялок Туковая сеялка — сельскохозяйственная машина предназначенная для разбрасывания минеральных удобрений по полям, как при посеве, так и при подкармливании растений в фазе роста. Такие сеялки также используются и для ...
... уровень их использования. Показатели обеспеченности трудовыми ресурсами указывают на сколько данное хозяйство обеспечено рабочей силой, какова трудовая активность работников. Но анализ обеспеченности трудовыми ресурсами еще не говорит о высокой или низкой производительности труда. Для повышения ее уровня необходимо, чтобы эти ресурсы использовались по назначению и их отдача была максимальна. Для ...
0 комментариев