5. Выводы

В ходе работы был проведен анализ данных опроса RLMS волны 2004 года. Основной целью работы было исследование зависимости наличия у домохозяйств товаров длительного пользования от доходов и различных социально-экономических факторов (числа членов домохозяйства, числа источников доходов, местности проживания).

Для учета наличия в домохозяйстве товаров длительного пользования было построено 3 варианта индикатора. Первый вариант, наиболее сложный, учитывал наличие ТДП по 13 позициям, веса различных ТДП (например, компьютер имеет значительно меньший вес, чем автомобиль), а также – количество лет, сколько данный товар уже используется в домохозяйстве. Логика данного индикатора такова, что чем больше дорогих товаров длительного пользования имеется в домохозяйстве и чем эти товары «моложе» (т.е. куплены относительно недавно), тем больше величина индикатора. Второй вариант упрощает логику первого индикатора, исключая из него веса ТДП. Т.е. теперь, например, дополнительная квартира и стиральная машинка имеют один и тот же вес. Но срок давности этих вещей по-прежнему учитывался. Этим я как бы проверяю обоснованность назначения весов товарам длительного пользования. Третий вариант индикатора еще проще. Он является простым пересчетом различных ТДП, без учета их возраста и весов. Это самый простой вариант.

Зависимости всех этих 3 индикаторов последовательно изучались в 3 блоках регрессионных моделей. Сначала изучалось влияние независимый переменных на 1-й индикатор, затем – на 2-й, затем – на 3-й. При этом в каждом блоке строилась не одна, а несколько моделей, т.е. сначала включалась одна независимая переменна, затем к ней добавлялась вторая и т.д. Для этого был использован метод анализа Stepwise пакета SPSS. Этот метод сам решает, нужно ли включить переменную в анализ, или нет. В итоге в 1 и 2 блоках были включены все независимые переменные, а в 3 блоке – все за исключением числа источников дохода. С добавлением каждой из независимых переменных в модель, объясняющая способность модели возрастала, при этом построенная в итоге модель множественной линейной регрессии была значимой (значения Sig. в таблице ANOVA были малы).

К сожалению, ни в одном блоке не удалось добиться высокого показателя качества регрессионной модели R2. Он был далек от единицы во всех случаях. Хуже всего поддавался моделированию 1-й показатель (самый сложный). Включением в модель всех 4 независимых переменных удалось добиться «объяснения» показателя лишь на R2=0,073 (т.е. на 7%). Это, конечно, мало. Второй показатель показал себя лучше. Он объяснялся максимум на 15,6%, что, хотя, тоже немного. Третий показатель показал себя чуть лучше второго. Он объяснялся на 18,7%.

 Таким образом, основной вывод, который мы можем сделать – это тот, что отчасти показатель наличия, давности приобретения и веса ТДП в домохозяйстве объясняются текущими показателями дохода, числа источников дохода, а также – числом членов семьи и местностью проживания, но, вообще, зависимость от всех этих переменных – довольно слабая. Во всяком случае, не превышает 20%.

Другой вывод, который можно сделать – это тот, что SPSS включал переменные в модель всегда в одном и том же порядке. Сначала число членов семьи, затем – город, затем – доход, затем – число источников дохода (кроме блока 3). Наверное, это логично, поскольку разнообразие товаров длительного пользования, конечно, во многом зависит от размера семьи. В большой семье сложно обойтись без основных вещей. Наличие ТДП, конечно, зависит и от местности проживания, поскольку городские жители все же пока лучше, чем сельские обеспечены самым необходимым. Кроме этого, сельские жители редко владеют, скажем, дачами, т.е. у них показатель ТДП часто оказывается заниженным. С другой стороны, городские жители, например, реже, чем сельские, владеют тракторами. То, что доход домохозяйства за последние 30 дней находился далеко не на 1-м месте, значит, наверное, то, что, хотя мы и пытались учесть срок давности приобретения ТДП, но все же это товары длительного пользования, а, значит, их наличие лишь в очень небольшой степени объясняется доходом за последний месяц.

Замечу, что для всех независимых переменных коэффициенты были положительными, за исключением числа источников дохода. Получается, что чем больше у домохозяйства источников дохода, чем меньше у него индекс ТДП. Конечно, эта переменная влияет на индекс слабее остальных, но все же может показаться странным, что большой спектр источников дохода оборачивается малым количеством (или большой давностью ТДП). Я думаю, этот «парадокс» объясняется довольно просто. При подсчете числа источников доходов мы учитывали и такие источники, как пенсия, субсидии, помощь от государственных и негосударственных организаций, помощь родственников и других людей (в том числе – не только деньгами, но и вещами). Получается, что большое число источников дохода – не показатель благополучия домохозяйства, а, скорее, наоборот - обозначение того, что семья вынуждена прибегать к помощи со стороны. Тогда как состоятельные семьи часто существуют, в основном, на зарплату и, может быть, проценты от акций и т.д. Я считаю это довольно интересным выводом.

Довольно тяжело объяснить, почему аккуратный учет располагаемых ТДП в домохозяйстве выражающийся индексом №1, оказался хуже, чем остальные индексы, которые не учитывают, ни вес ТДП, ни их возраст. Может быть, это от того, что c увеличением дохода потребление различных товаров длительного пользования изменяется в разной степени независимо от их цен. А может быть мы просто подобрали такие веса, которые не точно соответствуют соотношениям цен на товары. Может, сложность заключается еще в том, что у нас как бы смешались ТДП, которые есть почти в каждой семье (холодильник, телевизор) и товары, которые есть лишь у некоторых (автомобиль, компьютер, дополнительная квартира). Возможно, проблема состоит еще и в том, что, если учитывать возраст вещей и не учитывать вещи, которые старше 10 лет (как это было сделано в индексах №1 и 2), то около 20% домохозяйств имеют индекс ТДП, равный 0, т.е. вовсе не имеют вещей, которые нас интересуют. А для третьего индекса таких домохозяйств только 1%.

Итак, в результате проведенных исследований мы выяснили, что зависимость потребления ТДП от дохода и других социально-экономических факторов можно описать с помощью множественной линейной регрессии, но далеко не полностью.


6. Литература

1.         Салин В.Н., Шпаковская Е.П. Социально-экономическая статистика: Учебник. – М.: Юристъ, 2001. – 461 с.

2.         Социальная статистика: Учебник / Под ред. чл.-кор. РАН И.И. Елисеевой. – 3-е изд., перераб и доп. – М. Финансы и статистика, 2002. – 480 с.

3.         Социальное положение и уровень жизни населения России: Стат. сб. / Госкомстат России. – М., 2001. – 463 с.

4.         SPSS Base 14.0 Руководство пользователя. – SPSS Inc, 2005. – 814 с.

5.         Российский статистический ежегодник. 2005: Стат. сб. / Росстат. – М., 2006. – 819 с.

6.         Сигел, Эндрю. Практическая бизнес-статистика. : Пер. с англ. – М. : Издательский дом «Вильямс», 2002. – 1056 с.

7. Приложения

 

Командный синтаксис SPSS-15 для построения моделей. В приложении приводится перечень команд трансформации и статистического анализа в SPSS, выполнение которых позволяет при наличии исходных данных получить расчетные показатели, а также таблицы с результатами моделирования. Синтаксис позволяет при необходимости быстро воспроизвести ход процесса моделирования, а также допускает легкую модификацию для построения аналогичных моделей на других данных, имеющих схожую структуру (либо на этих же данных, но по подгруппам респондентов). Дополнительно о синтаксисе SPSS можно прочитать на сайте www.spsstools.ru, или в руководстве пользователя по синтаксису (см. выше).

Внимание! Перед запуском синтаксиса необходимо определить пропущенные значения по всем переменным, чтобы они исключались из анализа и не искажали результатов расчета.

Вычисление показателей.

Вычисление числа членов семьи (это присутствует либо в переменной i1.o, либо в i1.n).

COMPUTE nfam=SUM(i1.o,i1.n).

Вычисление двоичной переменной «город» (если код 1 или 2, то это – город).

COMPUTE gorod=status<3.

Вычисление числа источников дохода (если код в этих переменных равен 1, значит респондент согласился, что у него есть такой источник дохода).

COMPUTE ndohod=SUM(0, if3=1, if6.1=1, if6.2=1,

if9.1a=1,

if9.2a=1,

if9.3a=1,

if9.4a=1,

if9.5a=1,

if9.6a=1,

if9.7a=1,

if9.8a=1,

if9.9a=1,

if9.91a=1,

if9.10a=1,

if10=1,

if11.3=1,

if12.1a=1,

if12.2a=1,

if12.3a=1,

if12.4a=1,

if12.5a=1,

if12.6aa=1,

if12.6ba=1,

if12.7a=1,

if12.8a=1,

if12.9a=1,

if1210ba=1).

Вычисление первого варианта индекса (наличие предмета (код=1), т.е. 1 мы умножаем на вес и на максимум из 0 или 10-«возраст». Если возраст предмета больше или равен 10 годам, мы берем не отрицательное значение, а 0, т.е. не учитываем данный предмет).

COMPUTE indexTDP=SUM( 0, (ic9.1a=1)*0.04*Max(0,10-ic9.1b),

 (ic9.2a=1)*0.04*Max(0,10-ic9.2b),

 (ic9.3a=1)*0.04*Max(0,10-ic9.3b),

 (ic9.4a=1)*0.01*Max(0,10-ic9.4b),

 (ic9.5a=1)*0.03*Max(0,10-ic9.5b),

 (ic9.6a=1)*0.03*Max(0,10-ic9.6b),

 (ic9.6.2a=1)*0.04*Max(0,10-ic9.6.2b),

 (ic9.7a=1)*0.1*Max(0,10-ic9.7b),

 (ic9.7.1a=1)*0.1*Max(0,10-ic9.7.1b),

 (ic9.8a=1)*0.05*Max(0,10-ic9.8b),

 (ic9.9a=1)*0.1*Max(0,10-ic9.9b),

 (ic9.101a=1)*0.2*Max(0,10-ic9.101b),

 (ic9.12a=1)*1*Max(0,10-ic9.12b)).

Вычисление второго варианта индекса ТДП. Тут мы не учитываем вес предмета.

COMPUTE indexTDP1=SUM( 0, (ic9.1a=1)*Max(0,10-ic9.1b),

 (ic9.2a=1)*Max(0,10-ic9.2b),

 (ic9.3a=1)*Max(0,10-ic9.3b),

 (ic9.4a=1)*Max(0,10-ic9.4b),

 (ic9.5a=1)*Max(0,10-ic9.5b),

 (ic9.6a=1)*Max(0,10-ic9.6b),

 (ic9.6.2a=1)*Max(0,10-ic9.6.2b),

 (ic9.7a=1)*Max(0,10-ic9.7b),

 (ic9.7.1a=1)*Max(0,10-ic9.7.1b),

 (ic9.8a=1)*Max(0,10-ic9.8b),

 (ic9.9a=1)*Max(0,10-ic9.9b),

 (ic9.101a=1)*Max(0,10-ic9.101b),

 (ic9.12a=1)*Max(0,10-ic9.12b)).

Вычисление третьего варианта индекса ТДП. Здесь мы учитываем только наличие предметов.

COMPUTE indexTDP2=SUM( 0, (ic9.1a=1),

 (ic9.2a=1),

 (ic9.3a=1),

 (ic9.4a=1),

 (ic9.5a=1),

 (ic9.6a=1),

 (ic9.6.2a=1),

 (ic9.7a=1),

 (ic9.7.1a=1),

 (ic9.8a=1),

 (ic9.9a=1),

 (ic9.101a=1),

 (ic9.12a=1)).

Описательная статистика рассчитанных и присутствующих в базе данных показателей, которые будут использованы для моделирования:

FREQUENCIES

VARIABLES=nfam gorod ndohod

/ORDER=ANALYSIS .

GRAPH

/HISTOGRAM=if14 indexTDP1 indexTDP2 indexTDP3.

EXAMINE

VARIABLES=ndohod nfam if14 indexTDP1 indexTDP2 indexTDP3

/PLOT BOXPLOT STEMLEAF

/COMPARE GROUP

/PERCENTILES(5,10,25,50,75,90,95) HAVERAGE

/STATISTICS DESCRIPTIVES

/CINTERVAL 95

/MISSING LISTWISE

/NOTOTAL.

Построение 3-х блоков регрессионных моделей, по одному на каждый вариант индекса.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT indexTDP1

/METHOD=STEPWISE nfam gorod ndohod if14.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT indexTDP2

/METHOD=STEPWISE nfam gorod ndohod if14.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT indexTDP3

/METHOD=STEPWISE nfam gorod ndohod if14.


Информация о работе «Факторы обеспеченности российских домохозяйств товарами длительного пользования»
Раздел: Социология
Количество знаков с пробелами: 35182
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
50995
9
3

... статистики, определяющий соотношение в расходах населения на покупку товаров и услуг и на сбережения; • статистика деятельности предприятий и хозяйств, участвующих в формировании и использовании продовольственных ресурсов. На ее базе строятся балансы продовольственных ресурсов, определяется фонд потребления населением основных продуктов питания, и рассчитываются натуральные среднедушевые ...

Скачать
274954
11
7

... перестройки еще неустоявшихся социально-экономических отношений в нашем обществе. Поэтому по примеру США в условиях рыночной экономики Российское государство должно принять на себя общую социально-экономическую ответственность за комплексную систему социального обеспечения населения в общенациональном масштабе, которую сам по себе рынок создать не в состоянии. Общая социально-экономическая ...

Скачать
187188
9
6

... социальная политика области на этапе стабилизации и перехода к экономическому росту существенно будет зависеть от политики, проводимой Правительством Российской Федерации в соответствии с общим ходом экономических реформ. 3.2 Проблемы и перспективы повышения уровня и качества жизни населения России Анализ показывает, что главные проблемы социально сферы России в настоящее время связаны с ...

Скачать
76337
15
21

... 2002г. 2003г. 2004г. 2005г. За 9 мес. 2006г. всего совокупных расходов, грн 541,3 607,0 658,3 736,8 903,5 1229,4 1428,3 Процентов потребительские совокупные расходы 93,3 93,7 92,8 93,3 92,6 91,1 90,5 продовольственные товары (включая питание вне дома, алкогольные напитки и табачные изделия) 67,9 65,4 62,8 62,7 61,7 61,0 58,1 ...

0 комментариев


Наверх