2.3. Удельная отопительная характеристика здания.
Удельная отопительная характеристика используется для оценки теплотехнических показателей принятого конструктивно планировочного решения здания, а также для ориентировочного расчета необходимого количества теплоты для отопления здания.
Qор- расчетные потери теплоты здания;
Qор = ∑Qпол = 128648,59 Вт
Vн- объем здания по наружному обмеру;
Vн= 21,38*294=4381,04 м3
a- поправочный коэффициент учитывающий зависимость отопительной характеристики здания от расчетной температуры наружного воздуха tн и для жилых зданий определяется по формуле:
3. Конструирование системы отопления.
При разработке системы отопления руководствуемся требованиями третьей главы СНиП II.04.05 – 91* “Отопление вентиляция и кондиционирование”.
Тепловой пункт размещают в подвале центральной части зданий.
В данном курсовом проекте разрабатывается однотрубная проточно-регулирующую систему водяного отопления с нижней тупиковой разводкой магистралей и П-образным стояком.
Магистральные трубопроводы системы отопления прокладываются в подвале на кронштейнах вдоль наружных стен здания.
Для обеспечения выпуска воздуха и спуска воды уклоны магистральных трубопроводов горячей и обратной воды должны быть не менее 0,002. Уклон магистралей обычно направлен в сторону теплового пункта.
Система отопления обычно состоит из нескольких отдельных ответвлений, подключённых к общей распределительной магистрали, что позволяет производить регулировку теплоотдачи разных частей системы и отключать их при необходимости ремонтных работ. Удаление воздуха в системе с нижней разводкой магистралей осуществляется через краны, устанавливаемые на отопительных приборах верхних этажей. В нижних точках разводящих трубопроводов и на стояке устанавливаются устройства для спуска воды. Присоединение системы отопления к тепловой сети осуществляется через элеватор.
В жилых зданиях применяются чугунные и стальные радиаторы, конвекторы и, при обосновании, отопительные панели. В данном курсовом проекте рекомендуется применять чугунные радиаторы.
Отопительные приборы размещают в нишах под окнами, если это невозможно - у наружных или внутренних стен. В угловых помещениях приборы размещают вдоль обеих наружных стен, в лестничных клетках отопительные приборы устанавливаются под лестничным маршем первого этажа, их присоединяют к отдельным стоякам системы отопления.
П-образные стояки системы отопления имеют подъемный и опускной участки. Подъемный участок прокладывают по помещениям с меньшими тепловыми нагрузками. Отопление ванных комнат осуществляется полотенце- сушителем, которое присоединяется с циркуляционным стояком системы горячего водоснабжения. На подводках к накопительным приборам для регулирования теплоотдачи устанавливают регулирующую арматуру.
4. Гидравлический расчет системы отопления.
Гидравлический расчёт трубопроводов системы отопления выполняется по методу характеристик сопротивления с постоянными перепадами температур воды в стояках.
Для гидравлического расчёта из всей системы отопления выбираем наиболее нагруженную ветвь. Её чертёж со всеми необходимыми данными представлен на расчётной схеме в масштабе 1:100.
В связи с тем, что для проектируемой системы отопления не задан определённый располагаемый перепад давлений, гидравлический расчёт начинаем с последнего по ходу горячей воды стояка 1.
Общая методика расчёта методом характеристик сопротивления:
· Определяем тепловые нагрузки всех стояков в системе отопления как сумму общих потерь теплоты отопительных приборов:
Для остальных стояков расчёт производится аналогичным образом:
· Определяем расходы воды по стоякам:
tг - расчетная температура горячей воды в начале подающей
магистрали системы отопления, °С;
tо- расчетная температура горячей воды на обратной магистрали системы отопления, °С;
β1- поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь, принимаемых к установке отопительных приборов, в нашем случае β1=1.02;
β2- поправочный коэффициент, учитывающий дополнительные потери теплоты, вызванные размещением отопительных приборов у наружных стен, для нашего случая β2=1.04;
Значения tг иtо принимаем из задания равными соответственно 95 и 70°С.
· Действительные потери давления в стояке рассчитывают по формуле:
- характеристика сопротивления стояка;
· В зависимости от принятого диаметра участка магистрали определяем его характеристику сопротивления:
А- удельное динамическое давление в трубопроводе;
L- длина участка трубопровода;
d- диаметр трубопровода;
l- коэффициент трения;
- сумма коэффициентов всех сопротивлений на участке;
· Потери давления на участке магистрали определяются по формуле:
· Располагаемый перепад давлений для второго стояка равен сумме потерь давления в стояке 1, в подающей и обратной магистрали:
· По известным значениям располагаемого перепада давления и расхода теплоносителя для второго стояка находим требуемую характеристику сопротивления для данного стояка.
· Задаемся диаметром второго стояка и определяем его действительную характеристику сопротивления. Она должна быть близка к требуемой характеристике сопротивления:
· По расходу воды и полученному значению действительной характеристики сопротивления второго стояка находим действительные потери давления во втором стояке. Невязка давлений располагаемого и действительного не должна превышать 15%:
· Общее гидравлическое сопротивление системы отопления высчитывается по формуле:
Расчет стояка 1
Руководствуясь данными табл. 1, принимаем диаметры стояка 1 и радиаторных узлов равными 20 мм.
Таблица 1
Данные для предварительного выбора однотрубных стояков водяного отопления
Условный диаметр стояка dу, мм | Температурный перепад Δt, ˚с | Средние значения величин на стояке | ||
Расходов воды Gст, кг/ч | Скоростей воды υст, м/с | Тепловых нагрузок Qст, ккал/ч | ||
15 | 95-70=25 | 210-270 | 0,3-0,4 | 5250-6750 |
100-70=30 | 6300-8100 | |||
105-70=35 | 7350-9450 | |||
20 | 95-70=25 | 450-550 | 0,35-0,42 | 11250-13750 |
100-70=30 | 13500-16500 | |||
105-70=35 | 15750-19250 | |||
25 | 95-70=25 | 800-1000 | 0,4-0,49 | 20000-25000 |
100-70=30 | 24000-30000 | |||
105-70=35 | 28000-35000 |
Определение полной характеристики сопротивления стояка 1 как суммы характеристик сопротивления:
а) 7 вертикальных этажестояков проточно-регулируемых систем d = 20 мм:
кгс/м2 /(кг/ч)2
б) радиаторных узлов верхнего этажа:
кгс/м2 /(кг/ч)2
в) прямых участков труб стояка d=20 мм общей длиной l =7,5+12+0,8=20,3м:
кгс/м2 /(кг/ч)2
г) местных сопротивлений:
- вентиля на подающей магистрали с коэффициентом ξ=10
- пробкового крана на обратной магистрали с ξ=2
- отводов (4 шт.), гнутых под углом 90°, с ξ=1·4=4
- отступов от стояка к магистрали (2 шт.) с ξ=0,5·2=1
- тройников на проход горячей магистрали при Gпр/Gсб = 565,6/1052,7 = 0,53 с ξ=0,5
- тройников на проход обратной магистрали при Gпр/Gсб = 0,53 с ξ=3
Общая сумма составляет ∑ξ=20,5.
кгс/м2 /(кг/ч)2
Таким образом, полная характеристика сопротивления стояка 1:
кгс/м2 /(кг/ч)2
Действительные потери давления в стояке 1:
Расчет Ст2.
= 1896 кгс/м2 G=487,1 кг/ч
Ориентировочный расчёт показывает, что сконструировать стояк 2 из труб одного диаметра так, чтобы его характеристика сопротивления соответствовала требуемой, нельзя. Поэтому конструируем стояк из следующих частей:
· подъёмного участка с радиаторным узлом верхнего этажа диаметром 20мм.
· опускной части с радиаторным узлом верхнего этажа диаметром 15мм.
Подъемная часть(d=20мм):
S1=6*3.15*10-4=18,9*10-4 кгс/м2
радиаторный узел верхнего этажа с d=20мм: S12=1*1.46*10-4 =1.46*10-4 кгс/м2
Опускная часть(d=15мм):
S2=6*13.38*10-4=80,29*10-4 кгс/м2
радиаторный узел верхнего этажа с d=15мм: S22=1*5.03*10-4 =5.03*10-4
кгс/м2
Прямые участки труб с d=15мм и d=20 мм:
S3= 0.8*2.89*10-4 +0.8*0.59*10-4 +0.49*2.89*10-4 =8,45*10-4 кгс/м2
Местные сопротивления:
для подъемной части(d=20мм):
Вентиль на подающей магистрали x=10
Отвод гнутый под углом 900 (1): x=1-для d=20мм
Отступ от стояка к магистрали(1шт) x=0.5
Внезапное сужение x=0.5;
по формуле , для труб с с d=20мм A=0.325*10-4 кгс/м2, находим:
Для опускной части(d=15мм):
Пробковый кран на обратной магистрали x=3.5
Отвод гнутый под углом 900 (1): x=1.5-для d=15мм
Отступ от стояка к магистрали(1шт) x=0.5;
по формуле , для труб c d=15мм A=1.08*10-4 кгс/м2 , находим
Полная характеристика сопротивления Ст2
Sст2 =(18,9+1.46+80,29+5.03+8,4+3.9+5.94) *10-4= 123,92*10-4 кгс/м2
Расчет действительной потери давления для Ст2:
=∑S*G2
=123,92*10-4*487,12 =2940 кгс/м2
Невязка давлений
Расчет участка 2-3.
Принимаем диаметр участка d=25 мм
G= 1052,7 кг/ч
Расчет характеристики сопротивления на участке 2-3:
А=0,125 *10-4 кгс/м2
Расчет потери давления для участка 2-3:
=∑S*G2
Расчет участка 2’-3’.
Принимаем диаметр участка d=25 мм.
G= 1052,7 кг/ч
Расчет характеристики сопротивления на участке 2’-3’:
Расчет потери давлений для участка 2’-3’
Расчет Ст3.
Gст3=387,1 кг/ч
Перепад давлений (располагаемый) для Ст3:
Рст3= 1896 +103,3+111,6= 2110,9 кгс/м2
Ориентировочный расчёт показывает, что сконструировать стояк 3 из труб одного диаметра так, чтобы его характеристика сопротивления соответствовала требуемой, нельзя. Поэтому конструируем стояк из следующих частей:
· подъёмного участка с радиаторным узлом верхнего этажа диаметром 20мм.
· опускной части с радиаторным узлом верхнего этажа диаметром 15мм.
Подъемная часть(d=20мм):
S1=6*3.15*10-4=18,9*10-4 кгс/м2
радиаторный узел верхнего этажа с d=20мм: S12=1*1.46*10-4 =1.46*10-4 кгс/м2
Опускная часть(d=15мм):
S2=6*13.38*10-4=80,28*10-4 кгс/м2
радиаторный узел с d=15мм: S22=1*5.03*10-4 =5.03*10-4 кгс/м2
Прямые участки труб с d=15мм и d=20 мм:
S3= 0.8*2.89*10-4 +0.8*0.59*10-4 +0.79*2.89*10-4 =5.06*10-4 кгс/м2
Местные сопротивления:
Для подъемной части(d=20мм):
Вентиль на подающей магистрали x=10
Отвод гнутый под углом 900 (1): x=1-для d=20мм
Отступ от стояка к магистрали(1шт) x=0.5
Внезапное сужение x=0.5;
по формуле , для труб с с d=20мм A=0.325*10-4 кгс/м2, находим
Для опускной части(d=15мм):
Пробковый кран на обратной магистрали x=3.5
Отвод гнутый под углом 900 (1): x=1.5-для d=15мм
Отступ от стояка к магистрали(1шт) x=0.5;
по формуле , для труб c d=15мм A=1.08*10-4 кгс/м2 , находим
Полная характеристика сопротивления Ст3
Sст3 =(18,9+1.46+80,28+5.03+5.06+3.9+5.94) *10-4= 120,57*10-4 кгс/м2
Расчет действительной потери давления для Ст3:
=∑S*G2
=120,57*10-4*387,12= 1806.6 кгс/м2
Невязка давлений
Расчет участка 3-4.
Принимаем диаметр участка d=32 мм.
G= 1439,8 кг/ч
Расчет характеристики сопротивления на участке 3-4:
А=0.04 *10-4 кгс/м2
Расчет потери давления для участка 3-4:
=∑S*G2
Расчет участка 3’-4’.
Принимаем диаметр участка d=25 мм.
G= 1439,8 кг/ч d=32мм
Расчет характеристики сопротивления на участке 3’-4’:
Расчет потери давлений для участка 3’-4’
Расчет участка 4-5.
Принимаем диаметр участка d=40 мм.
G= 1859,5 кг/ч
Расчет характеристики сопротивления на участке 4-5:
А=0.0235 *10-4 кгс/м2
Тройник на проход с поворотом x=1.5
Вентиль x=8
Расчет потери давления для участка 4-5:
=∑S*G2
Расчет участка 4’-5’.
Принимаем диаметр участка d=40 мм.
G= 1859,5 кг/ч
Расчет характеристики сопротивления на участке 4’-5’:
Тройник на проход с поворотом x=1.5
Вентиль x=8
Расчет потери давлений для участка 4’-5’
=∑S*G2
Расчет участка 5-6.
Принимаем диаметр участка d=50 мм.
G= 2339,5 кг/ч
Расчет характеристики сопротивления на участке 5-6:
А=0.0084 *10-4 кгс/м2
Тройник на проход с поворотом x=1.5
Вентиль x=7
Расчет потери давления для участка 5-6:
=∑S*G2
Расчет участка 5’-6’.
Принимаем диаметр участка d=50 мм.
G= 2339,5 кг/ч
Расчет характеристики сопротивления на участке 5’-6’:
Тройник на проход с поворотом x=1.5
Вентиль x=7
Расчет потери давлений для участка 5’-6
Гидравлический расчёт однотрубной системы с нижней разводкой при тупиковой схеме сети с постоянными перепадами температуры воды в стояках.
... Принимаем толщину теплоизоляционного слоя равной 0,270 м и пересчитываем сопротивление теплопередачи элементов ограждающих конструкций.. Фактическое значение коэффициента теплопередачи ограждающих конструкций k, , определяем по формуле: ,(6) 2. Теплотехнический расчет конструкций чердачного перекрытия Для упрощения расчета круглых отверстий заменяем равновеликими по ...
... =2042,26ºСпо табл. 14-12 [5] k = 0,79. Содержание трехатомных газов в сухих газах по [4] . Максимальное содержание трехатомных газов в сухих газах по[4] . 3. Тепловой баланс котла по упрощенной методике теплотехнических расчетов Равича М.Б. и КПД (брутто) котлоагрегата Составление теплового баланса котлоагрегата заключается в установлении равенства между поступившим в агрегат ...
... слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – в практической работе таблица 2; δx – толщина расчетного слоя наружного ограждения в м; λx – коэффициент теплопроводности расчетного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – в практической работе таблица 2; αв - коэффициент теплоотдачи внутренней поверхности ограждающих ...
... 3 0C, находят по формуле: QТП = ΣК0.(tВ – tН).А.n.(1 + Σβ) = Q0.(1 + Σβ) К0 – коэффициент теплопередачи отдельной ограждающей конструкции, Вт/(м2. 0C) tН– расчетная температура наружного воздуха для холодного периода года (tН5) при расчете теплопотерь через наружные ограждения или температура воздуха более холодного помещения при расчете теплопотерь через внутренние ...
0 комментариев