2.3. Удельная отопительная характеристика здания.

Удельная отопительная характеристика используется для оценки теплотехнических показателей принятого конструктивно планировочного решения здания, а также для ориентировочного расчета необходимого количества теплоты для отопления здания.

 

Qор- расчетные потери теплоты здания;

Qор = ∑Qпол = 128648,59 Вт

Vн- объем здания по наружному обмеру;

Vн= 21,38*294=4381,04 м3

a- поправочный коэффициент учитывающий зависимость отопительной характеристики здания от расчетной температуры наружного воздуха tн и для жилых зданий определяется по формуле:


3. Конструирование системы отопления.

При разработке системы отопления руководствуемся требованиями третьей главы СНиП II.04.05 – 91* “Отопление вентиляция и кондиционирование”.

Тепловой пункт размещают в подвале центральной части зданий.

В данном курсовом проекте разрабатывается однотрубная проточно-регулирующую систему водяного отопления с нижней тупиковой разводкой магистралей и П-образным стояком.

Магистральные трубопроводы системы отопления прокладываются в подвале на кронштейнах вдоль наружных стен здания.

Для обеспечения выпуска воздуха и спуска воды уклоны магистральных трубопроводов горячей и обратной воды должны быть не менее 0,002. Уклон магистралей обычно направлен в сторону теплового пункта.

Система отопления обычно состоит из нескольких отдельных ответвлений, подключённых к общей распределительной магистрали, что позволяет производить регулировку теплоотдачи разных частей системы и отключать их при необходимости ремонтных работ. Удаление воздуха в системе с нижней разводкой магистралей осуществляется через краны, устанавливаемые на отопительных приборах верхних этажей. В нижних точках разводящих трубопроводов и на стояке устанавливаются устройства для спуска воды. Присоединение системы отопления к тепловой сети осуществляется через элеватор.

В жилых зданиях применяются чугунные и стальные радиаторы, конвекторы и, при обосновании, отопительные панели. В данном курсовом проекте рекомендуется применять чугунные радиаторы.

Отопительные приборы размещают в нишах под окнами, если это невозможно - у наружных или внутренних стен. В угловых помещениях приборы размещают вдоль обеих наружных стен, в лестничных клетках отопительные приборы устанавливаются под лестничным маршем первого этажа, их присоединяют к отдельным стоякам системы отопления.

П-образные стояки системы отопления имеют подъемный и опускной участки. Подъемный участок прокладывают по помещениям с меньшими тепловыми нагрузками. Отопление ванных комнат осуществляется полотенце- сушителем, которое присоединяется с циркуляционным стояком системы горячего водоснабжения. На подводках к накопительным приборам для регулирования теплоотдачи устанавливают регулирующую арматуру.


4. Гидравлический расчет системы отопления.

Гидравлический расчёт трубопроводов системы отопления выполняется по методу характеристик сопротивления с постоянными перепадами температур воды в стояках.

Для гидравлического расчёта из всей системы отопления выбираем наиболее нагруженную ветвь. Её чертёж со всеми необходимыми данными представлен на расчётной схеме в масштабе 1:100.

В связи с тем, что для проектируемой системы отопления не задан определённый располагаемый перепад давлений, гидравлический расчёт начинаем с последнего по ходу горячей воды стояка 1.

Общая методика расчёта методом характеристик сопротивления:

·           Определяем тепловые нагрузки всех стояков в системе отопления как сумму общих потерь теплоты отопительных приборов:

 

Для остальных стояков расчёт производится аналогичным образом:

·           Определяем расходы воды по стоякам:

tг - расчетная температура горячей воды в начале подающей

магистрали системы отопления, °С;

tо- расчетная температура горячей воды на обратной магистрали системы отопления, °С;

β1- поправочный коэффициент, учитывающий теплопередачу через дополнительную площадь, принимаемых к установке отопительных приборов, в нашем случае β1=1.02;

β2- поправочный коэффициент, учитывающий дополнительные потери теплоты, вызванные размещением отопительных приборов у наружных стен, для нашего случая β2=1.04;

Значения tг иtо принимаем из задания равными соответственно 95 и 70°С.

·           Действительные потери давления в стояке рассчитывают по формуле:

- характеристика сопротивления стояка;

·           В зависимости от принятого диаметра участка магистрали определяем его характеристику сопротивления:

 

А- удельное динамическое давление в трубопроводе;

L- длина участка трубопровода;

d- диаметр трубопровода;

l- коэффициент трения;

- сумма коэффициентов всех сопротивлений на участке;

·           Потери давления на участке магистрали определяются по формуле:

·           Располагаемый перепад давлений для второго стояка равен сумме потерь давления в стояке 1, в подающей и обратной магистрали:

·           По известным значениям располагаемого перепада давления  и расхода теплоносителя для второго стояка  находим требуемую характеристику сопротивления для данного стояка.

·           Задаемся диаметром второго стояка и определяем его действительную характеристику сопротивления. Она должна быть близка к требуемой характеристике сопротивления:

·           По расходу воды и полученному значению действительной характеристики сопротивления второго стояка находим действительные потери давления во втором стояке. Невязка давлений располагаемого и действительного не должна превышать 15%:

 

·           Общее гидравлическое сопротивление системы отопления высчитывается по формуле:

 

Расчет стояка 1

 

Руководствуясь данными табл. 1, принимаем диаметры стояка 1 и радиаторных узлов равными 20 мм.

 

Таблица 1

Данные для предварительного выбора однотрубных стояков водяного отопления

Условный диаметр стояка dу, мм

Температурный перепад Δt, ˚с Средние значения величин на стояке

Расходов воды

 Gст, кг/ч

Скоростей воды

υст, м/с

Тепловых нагрузок

Qст, ккал/ч

15 95-70=25 210-270 0,3-0,4 5250-6750
100-70=30 6300-8100
105-70=35 7350-9450
20 95-70=25 450-550 0,35-0,42 11250-13750
100-70=30 13500-16500
105-70=35 15750-19250
25 95-70=25 800-1000 0,4-0,49 20000-25000
100-70=30 24000-30000
105-70=35 28000-35000

Определение полной характеристики сопротивления стояка 1 как суммы характеристик сопротивления:

а) 7 вертикальных этажестояков проточно-регулируемых систем d = 20 мм:

кгс/м2 /(кг/ч)2

б) радиаторных узлов верхнего этажа:

 кгс/м2 /(кг/ч)2

в) прямых участков труб стояка d=20 мм общей длиной l =7,5+12+0,8=20,3м:

 кгс/м2 /(кг/ч)2

г) местных сопротивлений:

-          вентиля на подающей магистрали с коэффициентом ξ=10

-          пробкового крана на обратной магистрали с ξ=2

-          отводов (4 шт.), гнутых под углом 90°, с ξ=1·4=4

-          отступов от стояка к магистрали (2 шт.) с ξ=0,5·2=1

-          тройников на проход горячей магистрали при Gпр/Gсб = 565,6/1052,7 = 0,53 с ξ=0,5

-          тройников на проход обратной магистрали при Gпр/Gсб = 0,53 с ξ=3

Общая сумма составляет ∑ξ=20,5.

 кгс/м2 /(кг/ч)2

Таким образом, полная характеристика сопротивления стояка 1:

 кгс/м2 /(кг/ч)2

Действительные потери давления в стояке 1:

 

Расчет Ст2.

 

= 1896 кгс/м2 G=487,1 кг/ч

 

 Ориентировочный расчёт показывает, что сконструировать стояк 2 из труб одного диаметра так, чтобы его характеристика сопротивления соответствовала требуемой, нельзя. Поэтому конструируем стояк из следующих частей:

·           подъёмного участка с радиаторным узлом верхнего этажа диаметром 20мм.

·           опускной части с радиаторным узлом верхнего этажа диаметром 15мм.

Подъемная часть(d=20мм):

S1=6*3.15*10-4=18,9*10-4 кгс/м2

радиаторный узел верхнего этажа с d=20мм: S12=1*1.46*10-4 =1.46*10-4 кгс/м2

Опускная часть(d=15мм):

S2=6*13.38*10-4=80,29*10-4 кгс/м2

радиаторный узел верхнего этажа с d=15мм: S22=1*5.03*10-4 =5.03*10-4

кгс/м2

Прямые участки труб с d=15мм и d=20 мм:

S3= 0.8*2.89*10-4 +0.8*0.59*10-4 +0.49*2.89*10-4 =8,45*10-4 кгс/м2

Местные сопротивления:

для подъемной части(d=20мм):

Вентиль на подающей магистрали x=10

Отвод гнутый под углом 900 (1): x=1-для d=20мм

Отступ от стояка к магистрали(1шт) x=0.5

Внезапное сужение x=0.5;

по формуле  , для труб с с d=20мм A=0.325*10-4 кгс/м2, находим:

Для опускной части(d=15мм):

Пробковый кран на обратной магистрали x=3.5

Отвод гнутый под углом 900 (1): x=1.5-для d=15мм

Отступ от стояка к магистрали(1шт) x=0.5;

по формуле  , для труб c d=15мм A=1.08*10-4 кгс/м2 , находим

Полная характеристика сопротивления Ст2

Sст2 =(18,9+1.46+80,29+5.03+8,4+3.9+5.94) *10-4= 123,92*10-4 кгс/м2

Расчет действительной потери давления для Ст2:

=∑S*G2

=123,92*10-4*487,12 =2940 кгс/м2

Невязка давлений

Расчет участка 2-3.

Принимаем диаметр участка d=25 мм

G= 1052,7 кг/ч

Расчет характеристики сопротивления на участке 2-3:

А=0,125 *10-4 кгс/м2

  

Расчет потери давления для участка 2-3:

=∑S*G2

Расчет участка 2’-3’.

Принимаем диаметр участка d=25 мм.

G= 1052,7 кг/ч

Расчет характеристики сопротивления на участке 2-3:

  

Расчет потери давлений для участка 2-3

 

Расчет Ст3.

 

Gст3=387,1 кг/ч

Перепад давлений (располагаемый) для Ст3:

Рст3= 1896 +103,3+111,6= 2110,9 кгс/м2

Ориентировочный расчёт показывает, что сконструировать стояк 3 из труб одного диаметра так, чтобы его характеристика сопротивления соответствовала требуемой, нельзя. Поэтому конструируем стояк из следующих частей:

·      подъёмного участка с радиаторным узлом верхнего этажа диаметром 20мм.

·      опускной части с радиаторным узлом верхнего этажа диаметром 15мм.

Подъемная часть(d=20мм):

S1=6*3.15*10-4=18,9*10-4 кгс/м2

радиаторный узел верхнего этажа с d=20мм: S12=1*1.46*10-4 =1.46*10-4 кгс/м2

Опускная часть(d=15мм):

S2=6*13.38*10-4=80,28*10-4 кгс/м2

радиаторный узел с d=15мм: S22=1*5.03*10-4 =5.03*10-4 кгс/м2

Прямые участки труб с d=15мм и d=20 мм:

S3= 0.8*2.89*10-4 +0.8*0.59*10-4 +0.79*2.89*10-4 =5.06*10-4 кгс/м2

Местные сопротивления:

Для подъемной части(d=20мм):

Вентиль на подающей магистрали x=10

Отвод гнутый под углом 900 (1): x=1-для d=20мм

Отступ от стояка к магистрали(1шт) x=0.5

Внезапное сужение x=0.5;

по формуле  , для труб с с d=20мм A=0.325*10-4 кгс/м2, находим

Для опускной части(d=15мм):

Пробковый кран на обратной магистрали x=3.5

Отвод гнутый под углом 900 (1): x=1.5-для d=15мм

Отступ от стояка к магистрали(1шт) x=0.5;

по формуле  , для труб c d=15мм A=1.08*10-4 кгс/м2 , находим

Полная характеристика сопротивления Ст3

Sст3 =(18,9+1.46+80,28+5.03+5.06+3.9+5.94) *10-4= 120,57*10-4 кгс/м2

Расчет действительной потери давления для Ст3:

=∑S*G2

=120,57*10-4*387,12= 1806.6 кгс/м2

Невязка давлений

Расчет участка 3-4.

Принимаем диаметр участка d=32 мм.

G= 1439,8 кг/ч

Расчет характеристики сопротивления на участке 3-4:

А=0.04 *10-4 кгс/м2

  

Расчет потери давления для участка 3-4:

=∑S*G2

Расчет участка 3’-4’.

Принимаем диаметр участка d=25 мм.

G= 1439,8 кг/ч d=32мм

Расчет характеристики сопротивления на участке 3-4:

  

Расчет потери давлений для участка 3-4

Расчет участка 4-5.

Принимаем диаметр участка d=40 мм.

G= 1859,5 кг/ч

Расчет характеристики сопротивления на участке 4-5:

А=0.0235 *10-4 кгс/м2

Тройник на проход с поворотом x=1.5

Вентиль x=8

Расчет потери давления для участка 4-5:

=∑S*G2

Расчет участка 4’-5’.

Принимаем диаметр участка d=40 мм.

G= 1859,5 кг/ч

Расчет характеристики сопротивления на участке 4-5:

Тройник на проход с поворотом x=1.5

Вентиль x=8

Расчет потери давлений для участка 4-5

=∑S*G2

Расчет участка 5-6.

Принимаем диаметр участка d=50 мм.

G= 2339,5 кг/ч

Расчет характеристики сопротивления на участке 5-6:

А=0.0084 *10-4 кгс/м2

Тройник на проход с поворотом x=1.5

Вентиль x=7

Расчет потери давления для участка 5-6:

=∑S*G2

Расчет участка 5’-6’.

Принимаем диаметр участка d=50 мм.

G= 2339,5 кг/ч

Расчет характеристики сопротивления на участке 5-6:

Тройник на проход с поворотом x=1.5

Вентиль x=7

Расчет потери давлений для участка 5’-6

Гидравлический расчёт однотрубной системы с нижней разводкой при тупиковой схеме сети с постоянными перепадами температуры воды в стояках.



Информация о работе «Теплотехнический расчет»
Раздел: Строительство
Количество знаков с пробелами: 36577
Количество таблиц: 5
Количество изображений: 3

Похожие работы

Скачать
25785
3
10

... Принимаем толщину теплоизоляционного слоя равной 0,270 м и пересчитываем сопротивление теплопередачи элементов ограждающих конструкций.. Фактическое значение коэффициента теплопередачи ограждающих конструкций k, , определяем по формуле: ,(6) 2.              Теплотехнический расчет конструкций чердачного перекрытия   Для упрощения расчета круглых отверстий заменяем равновеликими по ...

Скачать
9213
2
0

... =2042,26ºСпо табл. 14-12 [5] k = 0,79. Содержание трехатомных газов в сухих газах по [4] . Максимальное содержание трехатомных газов в сухих газах по[4] . 3. Тепловой баланс котла по упрощенной методике теплотехнических расчетов Равича М.Б. и КПД (брутто) котлоагрегата Составление теплового баланса котлоагрегата заключается в установлении равенства между поступившим в агрегат ...

Скачать
8187
3
0

... слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – в практической работе таблица 2; δx – толщина расчетного слоя наружного ограждения в м; λx – коэффициент теплопроводности расчетного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – в практической работе таблица 2; αв - коэффициент теплоотдачи внутренней поверхности ограждающих ...

Скачать
23338
13
1

... 3 0C, находят по формуле: QТП = ΣК0.(tВ – tН).А.n.(1 + Σβ) = Q0.(1 + Σβ) К0 – коэффициент теплопередачи отдельной ограждающей конструкции, Вт/(м2. 0C) tН– расчетная температура наружного воздуха для холодного периода года (tН5) при расчете теплопотерь через наружные ограждения или температура воздуха более холодного помещения при расчете теплопотерь через внутренние ...

0 комментариев


Наверх