1. ТЭО СИСТЕМ ТЕПЛОСНАБЖЕНИЯ.
Определение оптимальной мощности центрального теплового пункта.
С увеличением мощности ЦТП снижаются удельные затраты в источник теплоснабжения, но вместе с тем возрастают аналогичные затраты на тепловые сети за счет увеличения их средних диаметров и протяженности. Оптимальная мощность ЦТП (количество ЦТП в жилом массиве) определяют технико-экономическим расчетом.
Задача сводится к минимизации приведенных затрат по комплексу ЦТП – тепловые сети.
, (1.1.1)
где i=1,2…n варианты проектных решений с различным количеством ЦТП;
КТС и ИТС – капитальные вложения и эксплуатационные расходы по системе теплоснабжения.
Задача решается методом вариантам расчетом с разным количеством ЦТП. Условие З=min соответствует оптимальное количество ЦТП, nopt →Gцтп. Капитальные вложения в систему теплоснабжения включают в себя сметную стоимость магистраль км, и распределим Кс , а также сметную стоимость Кцтп. Расходы на эксплуатацию системы теплоснабжения включает в себя отчисления на инновацию, на капитальные и текущие ремонты. Рр, Рк, Рт, Зп, У – расходы на управления , стоимость электроэнергии затрачиваемую на перекачку теплоноситель, стоимость тепло потерь трубопроводами.
В качестве первого приближения к аналитическому решению задачи, примем ряд допущений. Изменение мощности ЦТП (количество ЦТП) мало сказывается на затраты по магистральному транспорту теплоносителя. Изменяются в основном количество и суммарная протяженность ответвлений ЦТП. Практически не изменяется диаметр, протяженность по этому затраты в магистральный транспорт примем постоянный и исключим из целевой функции.
З=Ен(Кцтп+Кс)+Ицтп+Ис (1.1.2)
Анализ источников показывает, что в общем случаи удельные капитальные вложения на единицу тепло мощности ЦТП и сети зависят от многих факторов в том числе от мощности ЦТП Q, от плотности теплопотребления в жилом массиве q, схемы теплоснабжения, способа прокладки теплопровода, характера застройки жилого массива, географического климата и другим условиям. Однако определяющую роль играет параметр Q, поэтому можно записать
, (1.1.3)
где α и β – коэффициенты пропорциональности, численные значения которых зависят от схемы тепло снабжения и способа прокладки тепло провода.
Распишем эксплутационные расходы
Ицтп=φцтп*Кцтп +Зпцтп , (1.1.4)
Ис= φсКс+Э+Итр+Зпс, (1.1.5)
где φцтп, φс – доля годовых отчислений на эксплуатацию ЦТП и распределения сети.
Зпцтп=Зпс – удельная стоимость обслуживания ЦТП и распределительных сетей.
Э и Итр – зависят от мощности Q и от плотности тепло потребления q, однако в общем объеме затрат, эти компоненты составляют вторую величину в порядки малости, примем их постоянными, также исключим из целевой функции, тогда окончательно функция затрат следующий вид:
(1.1.6)
Для нахождения минимума затрат дифференцируем последнее равенство и приравниваем к нулю.
(1.1.7)
Перепишем полученное выражение.
(1.1.8)
Умножим обе части выражения (1.8) на
(1.1.9)
откуда
(1.1.10)
После возведения в степень –1,52 находим
(1.1.11)
Уравнение (1.11) в силу принятых допущений носит весьма приближенный характер.
Определим оптимальную мощность центрального теплового пункта для жилого массива города.
1. Плотность тепло потребления q =72,5 ГДж/(ч га).
2. Потребители подключены к тепловой сети по зависимой схеме α=7,3.
3. Прокладка теплопроводов канальная β=3,47.
4. Годовые отчисления от капитальных вложений на эксплуатацию φцтп=4,553 1/год , φс=2,088 1/год.
5. Коэффициент эффективности кап вложений Ен=0,12 1/год.
В результате имеем
Выбор оптимальной удельной потери давления в трубопроводах тепловой сети.
Методику расчета задачи рассмотрим на примере транзитной тепловой сети. С увеличением удельной потери давления уменьшаются капитальные вложения в тепловую сеть потери тепла за счет уменьшения диаметров трубопроводов. В месте с тем возрастает расход электроэнергии на работу сетевых насосов.
Задача сводится к минимизации функции видаЗ=(φ+Ен)Ктс+Э+Итп , (1.2.1)
где Ен – нормативный коэффициент эффективности кап вложений, равный 0,12 1/год;
Э – стоимость электроэнергии, расходуемой сетевыми насосами, руб/год;
Итп – годовая стоимость теплопотерь трубопроводами, руб/год;
Кт.с. – капитальные вложения в тепловую сеть, руб.
φ – доля годовых отчислений на реновацию, ремонты и обслуживание тепловой сети.
Капитальные вложения в тепловую сетьКт.с = ( а +в·d )l=a·l+b·d·l , (1.2.2.)
где а,в – стоимостные параметры 1 м тепловой сети;
l – длина тепловой сети, м;
d – диаметр тепловой сети, м.
Обозначим :
М= d · l, (1.2.3.)
где М – материальная характеристика тепловой сети, м².
Тогда уравнение (1.2.2.) примет вид:
Кт.с. = a·l+b·M (1.2.4.)
С изменением удельной потери давления изменяется диаметр трубопровода и ее материальная характеристика.
К´т.с = в ·М (1.2.5.)
Диаметр тепловой сети находится по формуле:
, (1.2.6.)
где К – коэффициент пропорциональности, численные значения которого определяются величиной абсолютной шероховатости внутренней поверхности трубопроводов;
G – расход теплоносителя, кг/с;
ρ - плотность теплоносителя, кг/м³;
∆P – потери давления в тепловой сети, Па.
Выразим потери давления в сети ∆P через удельную линейную потерю давления R и длину трубопровода l:
∆P = R · l · (1+m), (1.2.7.)
где m – доля потери давления в местных сопротивлениях тепловой сети:
m = Z, (1.2.8.)
где Z – коэффициент пропорциональности:
· для водяных сетей Z=0,02;
· для паровых сетей Z=0,1.
Тогда уравнение (1.2.6) примет следующий вид:
(1.2.9.)
А материальная характеристика примет вид:
(1.2.10.)
Обозначим через М0 материальную характеристику сети при некотором фиксированном значении удельной линейной потери давления R0.
Согласно (1.2.10) можно записать при ρ0=ρ
(1.2.11.)
Откуда
М=Мо (1.2.12.)
С учетом (1.2.5.) и (1.2.12) переменная часть капитальных вложений в тепловую сеть будет
К´т.с =в·Мо (1.2.13.)
Стоимость электроэнергии, затрачиваемой на перекачку теплоносителя равна:
, (1.2.14.)
где τ – годовая продолжительность эксплуатации тепловой сети, ч/год;
η – КПД сетевых насосов;
Сз – районные замыкающие затраты на электроэнергию, руб/(Вт ч).
Найдем стоимость тепла, теряемого трубопроводами :
Итп=Зт·τ·k·π·М0·(1+β) , (1.2.15.)
где Зт – районные замыкающие затраты на тепловую энергию, руб/Втч;
k – коэффициент теплопередачи трубопроводов тепловой сети, Вт/м²к. Определяется тепло техническим расчетом;
t - среднегодовая температура теплоносителя в трубопроводах, ºС;
t - средняя за период эксплуатации тепловой сети температура окружающей среды, ºС;
β – коэффициент, учитывающий теплопотери через неизолированные участки трубопровода.
Используя (1.2.1), (1.2.13), (1.2.14) и (1.2.15), запишем следующее выражение для целевой функции:
(1.2.16)
Для нахождения оптимальной величины удельной линейной потери давления продифференцируем функцию (1.2.16) и приравняем полученное выражение к нулю:
(1.2.17)
откуда после некоторых преобразований
R (1.2.18.)
где
(1.2.19)
Методика экономического обоснования транзитной тепловой сети сводится к следующим этапам расчета. При заданной величине R0 на основании гидравлического расчета определяется диаметр сети d0 и ее материальная характеристика М0. Затем выявляется оптимальное значение удельной линейной потери давления Ropt и повторным расчетом находится оптимальный диаметр dopt.
Методика расчета транзитного теплопровода применима и для тупиковой распределительной сети.
Оптимальное значение линейной потери давления на головной магистрали тепловой сети Ropt находится по уравнениям (1.2.18) и (1.2.19) с помощью подстановки:
;
где - суммарная протяженность участков головной магистрали, считая подающую и обратную линию теплопровода, м;
n – общее количество участков магистрали;
di,0 – диаметр i-го участка, рассчитанный при заданной величине удельной линейной потери давления R0, м;
li - длина i-го участка, м.
G=55кг/с
l1=650м l2=550м l3=750м
G=30кг/с
G=70кг/с
Рис 1. Расчетная схема тепловой сети.
Исходные данные.
1. Доля годовых отчислений на реновацию, ремонт и обслуживание тепловой сети =0,075 1/год.
2. КПД сетевых насосов η=0,6.
3. Плотность теплоносителя ρ=970 кг/м³.
4. Разность температуры =40 ºС.
5. Годовая продолжительность эксплуатации тепловой сети τ=6000 ч/год.
6. Удельная стоимость электроэнергии Сэ=58·10 руб/(Вт ч).
7. Районные замыкающие затраты на тепловую энергию Зт=76·10 руб/(Вт ч).
8. Стоимостной коэффициент в=3990 руб/м².
9. Коэффициент теплопередачи трубопроводов тепловой сети К=1,25 Вт/м²к.
10. Коэффициент учитывающий теплопотери через неизолированные участки трубопровода, β=0,2.
11. Коэффициент эффективности капитальных вложений Е=0,12 1/год.
Общая длина магистрали.
l=l1+l2+l3=650+550+750=1950 м.
Гидравлическим расчетом Rо=80 кПа , получим следующие диаметры сети по участкам: d1,0=377×9 мм, d2,0=273×7 мм, d3,0=194×5мм.
Материальная характеристика сети.
Мо=0,377·650+0,273·550+0,194·750=540,7 м².
Определим долю потери давления в местных сопротивлениях: m=Z
Определим оптимальное значение удельной линейной потери давления
R
Определение оптимальной толщины тепловой изоляции трубопроводов тепловой сети.
С увеличением толщины изоляции возрастают затраты в сооружение и эксплуатацию теплоизолированного трубопровода. Вместе с тем, снижается теплопотери, а значит и годовая стоимость теряемой теплоты.
Задача сводится к минимизации функции следующего вида:
З=(Ен+φ)Киз+Итп , (1.3.1)
где Ен – коэффициент эффективности кап вложений 1/год;
φ – доля годовых отчислений на эксплуатацию тепловой изоляции 1/год;
Киз – капитальные вложения в теплоизоляцию 1/год;
Итп – стоимость теплопотерь, руб/год.
Решение задачи рассмотрим на примере двухтрубного подземного теплопровода при бесканальной прокладке.
Капитальные вложения в тепловую изоляцию 1м двухтрубного теплопровода определяется по формуле:
, (1.3.2)
где Сиз – удельная стоимость тепловой изоляции «в деле» , руб/год;
Vиз – объем тепловой изоляции, м;
d – диаметр трубопровода, м;
δиз – толщина тепловой изоляции, м.
Годовая стоимость тепла, теряемого теплопроводом, определяется по формуле
Ит.п = (qп + qо) τ Ст (1+β) , (1.3.3)
где qп , qо - удельные потери тепла 1 м подающего и обратного трубопроводов тепловой сети, Вт/м;
Ст – районные замыкающие затраты на тепловую энергию, руб/(Вт ч);
τ – годовая продолжительность эксплуатации тепловой сети, ч/год;
β - коэффициент, учитывающий теплопотери через не изолированные участки трубопровода.
Удельные теплопотери трубопроводами находятся
, (1.3.4)
, (1.3.5)
где ,-среднегодовая температура теплоносителя в подающей и обратной магистрали, ˚С;
- средняя температура грунта на глубите заложения трубопроводов, принимаются по климатическим справочникам - 5ºС;
Rп, Rо, - термическое сопротивления подающего и обратного трубопроводов тепловой сети, м К/Вт;
Rинт - дополнительное термическое сопротивление, учитывающее тепловую интерференцию теплопроводов, м К/Вт.
Термические сопротивления трубопроводов определяются по формулам:
, (1.3.6)
, (1.3.7)
где , - теплопроводность теплоизоляции и грунта, Вт/(м К);
h – глубина заложения трубопровода , м;
s – шаг между трубами, м.
Подставляя вышеприведенные выражения в целевую функцию получим (1.3.8)
Задаваясь рядом значений 1,2, …n вычислим затраты З1, З2, …Зn . Условию З=min соответствует оптимальная толщина тепловой изоляции .
Определим оптимальную толщину тепловой изоляции 2х трубного теплопровода водяной теплосети при исходных данных:
1. Прокладка трубопровода – бескональная.
2. Тип тепловой изоляции – битумоперлит.
3. Наружный диаметр трубопровода, dн = 0,219м.
4. Глубина заложения трубопровода , м.
5. Шаг между трубами, ,м.
6. Теплопроводность изоляции, λиз= 0,12 Вт/мк.
7. Теплопроводность грунта, λгр=1,7 Вт/мк.
8. средне годовая температура грунта , = 5ºС.
9. Среднегодовая температура теплоносителя, =90, =50ºС.
10. Годовое число часов работы тепловой сети , τ= 6000 ч/год.
11. Удельная стоимость тепловой изоляцию, Сиз=1330 руб/м3.
12. Удельная стоимость тепловой энергии, СТ=348·руб/(Вт ч).
0 комментариев