Технологии погружения металлического шпунта вблизи существующих зданий с обеспечением их безопасности и недопущения неравномерных осадок их фундаментов

43923
знака
0
таблиц
16
изображений

Реферат на тему

«Технологии погружения металлического шпунта вблизи существующих зданий с обеспечением их безопасности и недопущения

неравномерных осадок их фундаментов»


Содержание

 

Введение

1.   Вибромолоты и вибропогружатели для погружения в грунт металлического шпунта

2.   Вибраторы для погружения в грунт металлического шпунта

3.   Сравнение вариантов погружения

4.   Особенности погружения вблизи существующих зданий

Литература



Введение

 

При возведении зданий и сооружений в условиях плотной городской застройки возникает целый ряд факторов, соблюдение которых обеспечивает качество и долговечность не только непосредственно возводимых объектов, но и окружающих их сооружений:

·          необходимость обеспечения поддержания эксплуатационных свойств объектов, расположенных в непосредственной близости от пятна застройки;

·          невозможность расположения на строительной площадки полного комплекса бытовых и инженерных сооружений, машин и механизмов;

·          разработка технических и технологических мероприятий, направленных на защиту экологической среды объекта и существующей застройки.

Особенность перечисленных выше факторов заключается в том, что для многих из них на сегодняшний день отсутствует нормативная база, комплексно рассматривающая их в привязке к процессам возведения зданий.

Возникающие в первые же дни строительства проблемы, связанные с образованием трещин на стенах, могут повлечь за собой не только финансовые потери, но и привести к закрытию строительства. Такие же последствия могут возникнуть и от невозможности обеспечения инженерных и санитарных требований по обустройству строительной площадки.

Здания, расположенные в непосредственной близости от участка застройки, могут быть подвержены ряду воздействий, возникающих в процессе возведения нового здания. Это:

·          отрывка в непосредственной близости от здания котлована под новое строительство;

·          вибрация от расположенных в непосредственной близости строительных машин и механизмов.

Первая группа дефектов возникает от изменения статических характеристик оснований. Удаление грунта вблизи фундаментов зданий, оснований дорог и других существующих сооружений приводит к изменению силового поля вокруг них, поэтому создание конструктивного баланса позволяет компенсировать возникающие воздействия. Вторая группа дефектов является следствием динамических воздействий работающих строительных машин и механизмов. Их снижения до допустимых уровней достигают реализацией специальных инженерных мероприятий.

До начала земляных работ необходимо осуществить укрепление оснований и фундаментов существующих сооружений и городской инфраструктуры, расположенных в непосредственной близости от строительной площадки. Укрепление конструкций оснований и фундаментов должно обеспечить статическое равновесие здания на период отрытого котлована до возведения несущих конструкций подземной части нового здания.

Мероприятия по укреплению оснований и фундаментов подразделяются в зависимости от воздействия на несущий каркас и прилегающие основания на постоянные и временные. К постоянным относятся те решения, при реализации которых усиление конструкции становится неотъемлемой частью возводимого сооружения.

До начала земляных работ по всему периметру котлована устраивают шпунтовое ограждение (рис. 1). Цель шпунтового ограждения – воспрепятствовать сползанию и обрушению грунтовых массивов, находящихся за пределами строительной площадки. В качестве несущих элементов шпунтового ограждения используют металлические трубы или сортаментные прокатные балки – швеллеры или двутавры. Расчетом устанавливают расстояние металлическими элементами и их характеристики: для труб – это длина, диаметр, толщина стенки; для балок – длина и номер их сортамента.

По окончанию возведения подземной части здания шпунтовое ограждение, как правило, извлекают из грунта, его можно использовать повторно.

Рис. 1. План металлического шпунтового ограждения котлована:

1 – труба; 2 – деревянное ограждение; 3 – балка; 4 – распорки; 5 – раскосы


1.         Вибромолоты и вибропогружатели для погружения в грунт металлического шпунта

 

Клиновый наголовник для шпунта (рис. 2) является одним из первых решений быстродействующего узла соединения вибропогружателя и погружаемого элемента. Наголовник такого типа был разработан Д.Д. Барканом и В.Н. Тупиковым в 1949 г., а затем усовершенствован О.А. Савиновым и А.Я. Лускиным. Эта конструкция оказалась весьма удачной и до сего времени широко используется при производстве шпунтовых работ по вибрационной технологии с помощью высокочастотных, относительно легких вибропогружателей. К недостаткам клинового наголовника этого вида следует отнести необходимость устройства выреза в шпунтине, а также самопроизвольное ослабление соединения при вибрировании и возможность возникновения нежелательных ударов на контакте клин – шпунт или вибровозбудитель – шпунт [1].

Рис. 2. Конструктивные решения наголовников с фиксирующими деталями, перемещающими в поперечной плоскости сквозь прорези в погружаемом (извлекаемом) элементе или образующими в нем углубления

а – клиновый наголовник для шпунта; б – гидравлический наголовник для шпунта, стальных труб и оболочек; в-клиновый наголовник виброгрейфера продольно-вращательного действия (на схеме клиновые пары условно показаны развернутыми на 900)

Наголовник для шпунта, разработанный в ЦНИИСе [11] и изображенный на рис. 2, б, снабжен парой пуансон – матрица с гидроприводом. Шпунт зажимается при местном деформировании его стенки. Это надежная система захвата, однако в конструкции наголовника необходимо иметь прочную плиту и щеки, способные воспринимать реактивные усилия от деформирования стенки шпунта.

По виду динамического воздействия на погружаемый (извлекаемый) элемент вибрационные машины разделяются на вибропогружатели, ударно-вибрационные погружатели-вибромолоты, а также комбинированные, в которых могут реализовываться как вибрационные, так и ударно-вибрационные режимы или их сочетания.

Рис. 3. Конструктивные схемы основных типов вибромолотов для свайных и буровых работ

а – свободный беспружинный вибромолот; б – пружинный вибромолот с ударами, направленными вниз; в-то же, направленными вверх


Ударно-вибрационные машины ВНИИстройдормаша и ЦНИИСа для погружения и извлечения шпунта (табл. 1) являются пружинными вибромолотами. Вибромолот В1–601 и его модификации выполнены свободными пружинными по схеме рис. 4, а. В основе остальных вибромолотов этих организаций лежат схемы рис. 3, б или 3, в, требующие жесткого скрепления вибромолота со шпунтом, которое осуществляется у СП-58 клиновым наголовником, а у МШ-2М – гидравлическим, устроенным по схеме рис. 2, б.

Пружинные вибромолоты, устроенные по схеме 3, б [12], а также вибромоты для ударно-вибрационного извлечения из грунта шпунта и труб (схема рис. 3, в) создают с частотой колебаний от 16 Гц и более как трансмиссионного, так и бестрансмиссионного типов с наголовниками, обеспечивающими в основном жесткое крепление рамы вибромолота к погружаемому элементу.

Рис. 4. Конструктивные схемы свободных пружинных вибромолотов

а – свободный пружинный вибромолот без регулирования натяжения пружин во время его работы; свободные пружинные вибромолоты с регулированием режима их работы изменением натяжения пружин статической нагрузкой; б – сила пригруза приложена к вибровозбудителю и передается погружаемому элементу в течение времени удара; в-сила пригруза приложена к вибровозбудителю и передается погружаемому элементу первоначально только в течение времени удара, а на заключительной стадии погружения – дополнительно к этому в виде постоянно действующей вдавливающей силы; г – сила пригруза постоянно приложена к погружаемому элементу и вибровозбудителю, по мере заглубления элемента имеется возможность увеличения силы его вдавливания с одновременным уменьшением пригруза вибровозбудителя и увеличение его ударной скорости

Вибропогружатели ВПП-2А и его модификации решены по схеме рис. 5, в с подрессоренной пригрузкой, виброустановка ВШ-1 является вибромашиной комбинированного действия и может работать в вибрационном и в различных ударно-вибрационных режимах (одноударном и двухударном, как при забивке шпунта, так при его выдергивании) [13]. Эти вибромашины комплектуются наголовниками, выполненными по схемам рис. 2, а или рис. 2, б.

Широкое внедрение вибрационной техники и технологии в фундаментостроении было осуществлено в 50-х – 70-х гг. прошлого века. Это явилось следствием усилий, в основном, отечественных ученых и инженеров, разработавших на основе теоретических и экспериментальных исследований соответствующие вибротехнические средства и обосновавших рациональную область применения и высокую эффективность вибрационного метода.

Необходимость генерирования минимального уровня колебаний при использовании вибрационного метода в фундаментостроении заставляет предъявлять жесткие требования к вибрационной технике и технологии производства работ. Наиболее ярким примером этого являются вибрационная техника и технология погружения (извлечения) металлического шпунта.


Рис. 5. Конструктивные схемы вибропогружателей, применяемых в свайных и буровых работах

а – бестрансмиссионный вибропогружатель с отдельным амортизатором и жестким грузозахватным органом; б – трансмиссионный вибропогружатель со встроенным приводным электродвигателем и амортизатором с жестким грузозахватным органом; в-вибропогружатель с подрессоренной пригрузкой, приводным электродвигателем обычного исполнения и жестким грузозахватным органом; г – вибропогружатель со встроенными приводными электродвигателями, центральным проходным отверстием и гибким грузозахватным органом

Накопленный опыт погружения шпунта вибропогружателями вблизи существующих сооружений показал, что при рационально выбранных параметрах их работы, как правило, нет необходимости в расчетной или инструментальной оценке опасности генерируемых колебаний в грунте, если расстояние от сооружения до ближайшего погружаемого шпунта составляет 20 м и более или 2–3 м для подземных коммуникаций. Перед погружением шпунт должен быть проверен на прямолинейность и чистоту полостей замков; при виброизвлечении шпунта из глинистых грунтов для «срыва» необходимо предварительное вибрирование шпунтины без подъема в течение 1–1,5 мин [5].

Многолетним опытом доказано, что при погружении в грунт элементов с малым лобовым сопротивлением (шпунт, трубы с открытым нижним торцом) вибрационный метод, реализуемый с помощью В-402, по сравнению с другими способами позволяет получать наибольшую производительность при щадящем динамическом воздействии и использовании простого комплекта машин, включающего вибропогружатель и кран. При этом высокая скорость погружения элементов в грунт (в зависимости от геологических условий – 0,5–2 м/мин) позволяет свести до минимума суммарное время динамического воздействия на окружающую среду.

Так, например, в слабых глинистых грунтах с помощью В-402 было возведено шпунтовое ограждение котлована для заглубленной части вестибюля станции метро вблизи жилого здания, являющегося архитектурным памятником. Здание, отстоящее от ограждения на одном конце на расстоянии 7 м, а на другом – 10 м, находилось в аварийном состоянии. Работы сопровождались геотехническим мониторингом. Как показали наблюдения, уровень колебаний грунта основания и элементов здания в процессе вибропогружения шпунта не представлял опасности для целостности здания, что подтвердили сохранившиеся маяки, установленные по фронту стены здания в 4 точках. По данным измерений, равномерные осадки здания за все время вибропогружения шпунта составили 2–3 мм. Особенно следует отметить, что в рассматриваемом случае из-за стесненных условий копровое оборудование взамен кранового невозможно было применить [6].

На основании накопленного опыта вибрационная технология погружения шпунта была призвана наиболее эффективной, особенно при погружении в водонасыщенные песчаные и пластичные глинистые грунты [1].

Вибромолоты, предназначенные для погружения элементов и, в частности, металлического шпунта, могут быть разделены на два типа: с направленной и ненаправленной (вращающейся) возмущающей силой вибратора.

Вибромолоты с направленной возмущающей силой. В таких вибромолотах вибратор конструируется по обычной двухвальной системе, при которой составляющие возмущающих сил в направлении, перпендикулярном погружению, уравновешиваются вращением эксцентриков в противоположные стороны. Существенной особенностью такой схемы вибромолота является отсутствие принудительной синхронизации их вращения, т.е. шестеренной связи между валами двигателей.

Вибромолоты по этой схеме впервые были предложены и осуществлены С.Я. Цаплиным, причем им же были разработаны и испытаны конструкции вибромолотов специально для погружения металлического шпунта. На рис. 7 приводится общий вид модели вибромолота конструкции С.Я. Цаплина, имеющего следующую техническую характеристику:

Мощность электродвигателя в квт………………………………… 2 по 20

Число оборотов в 1 мин, …………………………………………… 1450

Момент эксцентриков в кгсм ……………………………………… 700

Вес ударной части в кг ……………………………………………. 700

Суммарная жесткость пружин в кг/см ……………………………. 1200

Полный вес вибромолота (без наголовника) в кг ………………… 2000


Рис. 7. Общий вид вибромолота (конструкция С.Я. Цаплина)

Вибратор может быть использован для погружения шпунта на глубину до 12 – 14 м в песчаные водонасыщенные грунты и на 6 – 7 м – в глинистые.

Общий вид одного из вибраторов с направленной возмущающей силой, дан на рис. 8. Характерной особенностью этого вибратора является наличие только верхних пружин; поэтому он работает только с предварительным натяжением последних. Техническая характеристика этого вибромолота следующая:

Количество электродвигателей………………………………. 2

Мощность каждого электродвигателя в квт ……….….…… 14

Тип электродвигателя (во встроенном исполнении с электро-

изоляцией по классу В) ………………………….……….…… АВ-52–4

Число оборотов ротора в 1 мин. ………….…………….…… 1440

Возможное число ударов в 1 мин.……………….………. 720 – 1440

Момент эксцентриков в кгсм…………………………………………… 400

Вес ударной части вибромолота в кг………………………………. 590

Полный вес вибромолота в кг…………………………………………. 870

Суммарная жесткость пружин в кг/см……………………………… 1000

Рис. 8. Общий вид вибромолота ЦНИС-7

Испытания показали, что такая конструкция вибромолота обладает долговечностью порядка 50 час. машинного времени работы вибромолота, что может быть признано вполне удовлетворительным [4].

Вибромолоты с ненаправленной возмущающей силой. Основная конструктивная схема этого типа вибромолота, запроектированного в НИИ оснований для погружения шпунта, иллюстрируется на рис. 9. Отличительной ее конструктивной особенностью является наличие только одного электродвигателя, на вал которого насаживаются (с обеих сторон) эксцентрики с заданным моментом.


Рис. 9. Общий вид вибромолота с ненаправленной возмущающей силой (конструкция В.Н. Тупикова)

Помимо вертикальной составляющей возмущающей силы, вызывающей вертикальные удары, в этих молотах существует еще горизонтальная составляющая той же силы, вызывающая горизонтальные колебания вибратора. Так как жесткость пружин в горизонтальном направлении весьма мала, то амплитуда вынужденных горизонтальных колебаний также будет небольшой, даже для мощных вибромолотов, в которых вибраторы имеют большие моменты эксцентриков. При этом на долговечность вибромолота и на скорость удара горизонтальные колебания вибратора не будут оказывать более или менее существенного влияния. Вместе с тем конструкция вибромолота весьма упрощается, и, стало быть, надежность его работы увеличивается.

Техническая характеристика указанного вибромолота с ненаправленной возмущающей силой (рис. 9) следующая:

Мощность электродвигателя в квт……………………………………………20

Число оборотов в 1 мин……………………………………………………….980

Момент эксцентриков в кгсм…………………………………………………700

Жесткость пружин в кг/см………………………………………………….1500

Вес ударной части в кг…………………………………………………………700

Общий вес вибромолота в кг…………………………………………………1100

Вибромолот предназначен для погружения шпунта средних профилей на глубину 12 -14 м (в водонасыщенные пески) и на 7 – 8 м в глинистые (средней прочности) [4].

 


Информация о работе «Технологии погружения металлического шпунта вблизи существующих зданий с обеспечением их безопасности и недопущения неравномерных осадок их фундаментов»
Раздел: Строительство
Количество знаков с пробелами: 43923
Количество таблиц: 0
Количество изображений: 16

0 комментариев


Наверх