4.3 Подбор сечения главной балки
Находим толщину стенки пологая, что tf=2 cм, hw=h-2 tf= -2·2= см
а) .
см = мм;
= 1,21 см = 12 мм.
Принимаем мм.
Находим требуемую площадь поясов :
см4;
см4;
см4;
см2;
см.
Принимаем пояса из листа 550×20 мм. При этом см2.
;;
.
Таким образом, рекомендации выполнены. Принятое сечение балки показано имеет характеристики
Рисунок 7 – Принятое сечение балкиГеометрические характеристики сечения:
см4,
см3.
Проверка прочности:
МПа
Недонапряжение составляет:
Проверки прогиба балки не требуется, так как принятая высота м больше, чем м.
4.4 Изменение сечения главной балки
Принимаем место изменения сечения на расстоянии 2,3 м от опор, т.е. приблизительно 1/6l, как показано на рисунке 8.
Рисунок 8 – Изменение сечения по длине
Находим расчетные усилия:
кН·м;
кН.
Подбираем сечение, исходя из прочности стыкового шва нижнего пояса. Требуемый момент сопротивления равен:
см3.
Для выполнения стыка принята полуавтоматическая сварка без физического контроля качества шва.
см4;
см4;
см2.
см.
Принимаем поясной лист 300×20 мм.
Геометрические характеристики измененного сечения:
см;
см4;
см3;
см3 – статический момент пояса (3.7)
см3. – статический момент половины сечения
Проверка прочности по максимальным растягивающим напряжениям в точке А по стыковому шву (рис. 9)
Рисунок 9 – К расчету балки в месте изменения сечения
кН/см2 < кН/см2
Наличие местных напряжений, действующих на стенку балки, требует проверки на совместное действие нормальных, касательных и местных напряжений в уровне поясного шва и под балкой настила по уменьшенному сечению вблизи места изменения ширины пояса. Так как под ближайшей балкой настила будет стоять ребро жесткости, которое воспринимает давление балок настила, передачи локального давления в этом месте на стенку не будет, .
Поэтому приведенные напряжения проверяем в месте изменения сечения на грани стенки (точка Б), где они будут наибольшими:
кН/см2;
кН/см2;
кН/см2 < кН/см2. = 27.6 кН/см2
Проверка прочности опорного сечения на срез (по максимальным касательным напряжениям в точке В):
кН/см2 <
< кН/см2
Проверка прочности стенки на местное давление балок настила по формуле:
кН/см2 < кН/см2,
Где кН, кН/м м;
см
b = 14,5 см – ширина полки балки настила I №36 из сортамента;
см – толщина полки главной балки;
см – толщина стенки главной балки.
Таким образом, прочность принятого уменьшенного сечения главной балки обеспечена.
4.5 Проверить общую устойчивость балки
Устойчивость балок проверять не требуется, если выполняются следующие условия:
– нагрузка передается через сплошной жесткий настил, непрерывно опирающийся на сжатый пояс балки и надежно с ним связанный, в частности, железобетонные плиты или стальной лист;
– при отношении расчетной длины балки (расстояние между точками закрепления сжатого пояса от поперечных смещений) к ширине сжатого пояса “b” не более
(3.7)
Коэффициент принимается равным 0,3 при учете пластических деформаций. При отсутствии пластических деформаций . тогда;
> .
Следовательно, устойчивость балки можно не проверять.
4.6 Проверка местной устойчивости сжатого пояса и стенки
Устойчивость сжатого пояса при отсутствии пластических деформаций обеспечивается выполнением условия:
, где
.
В рассмотренном примере устойчивость обеспечена.
Расставим ребра жесткости и проверим местную устойчивость стенки.
Рисунок 10 – Расстановка ребер жесткости. Расчетные усилия для проверки устойчивости стенки
Ребра жесткости принимаем односторонние шириной
мм
и толщиной
мм.
В отсеке №1 стенка работает в упругой стадии и проверка устойчивости выполняется по формуле
Расчетные усилия принимаем приближенно по сечению м, м, , под балками настила.
кН·м;
кН;
кН/см2;кН/см2; (по 3.6)
кН/см2;
;
Предельное значение находим критические напряжения
и
кН/см2;
кН/см22250
кН/см2
Проверяем устойчивость стенки отсека № 1 по формуле (3.14):
Устойчивость стенки обеспечена.
В отсеке № 2 расположено место изменения сечения, поэтому эпюра sх имеет скачок. Средние напряжения в пределах наиболее напряженного участка отсека (расчётного) длиной мм можно найти, разделив площадь эпюры sx на длину участка. Однако в настоящем примере приближённо примем средние напряжения для проверки устойчивости по сечению x=3,5 м, учитывая, что уменьшенное сечение находится близко к краю отсека и мало влияет на устойчивость стенки.
кН×м;
кН;
кН/см2;
кН/см2;
кН/см2;
;
Находим критические напряжения
кН/см2;
кН/см2;
кН/см2.
Проверяем устойчивость стенки отсека № 2:
Устойчивость стенки обеспечена.
Проверяем устойчивость стенки отсека № 3
кН×м;
кН;
кН/см2;
кН/см2;
кН/см2;
;
Находим критические напряжения
кН/см2;
кН/см2;
кН/см2.
Проверяем устойчивость стенки отсека № 3:
Устойчивость стенки обеспечена.
Проверяем устойчивость стенки отсека № 4
кН×м;
кН;
кН/см2;
кН/см2;
кН/см2;
;
Находим критические напряжения
кН/см2;
кН/см2;
кН/см2.
Проверяем устойчивость стенки отсека № 4:
Устойчивость стенки обеспечена.
4.7 Расчет поясных швов главной балки
Поясные швы примем двусторонними, так как . Расчет выполняем для наиболее нагруженного участка шва у опоры под балкой настила. Расчетные усилия на единицу длины шва составляют
кН/см;
кН/см.
1 –сечение по металлу шва;
2 –сечение по металлу границы сплавления
Рисунок 11 – К расчету поясных швов
Сварка автоматическая, выполняется в положении «в лодочку» сварочной проволокой Св-08Га. Для этих условий и стали С245 находим
кН/см2;
кН/см2;
.
Принимаем минимальный катет шва мм. (см. табл. 6 прил. Б)
Проверяем прочность шва:
кН/см2 < кН/см2;
по металлу границы сплавления
кН/см2 < кН/см2;
Таким образом, минимально допустимый катет шва достаточен по прочности.
4.8 Конструирование и расчет опорной части балкиРисунок 13 – Вариант опорной части балки
Ребро крепится к стенке полуавтоматической сваркой в углекислом газе сварочной проволокой Св-08Г2С. Размер выступающей части опорного ребра принимаем 20 мм. Из условия смятия находим
см2;
Ширину опорного ребра принимаем равной ширине пояса уменьшенного сечения балки: . Тогда:
см.
Принимаем ребро из листа 300×14 мм.
Площадь см2 > см2.
Проверяем устойчивость опорной части
см;
см4;
(моментом инерции участка стенки шириной пренебрегаем ввиду малости)
см2;
По таблице 16 прил. Б находим путем интерполяциикН/см2<Ry=24 кН/см2.
Проверяем местную устойчивость опорного ребрасм;
Подбираем размер катета угловых швов по формуле:
Откуда
см = 7 мм, где
кН/см2; кН/см2;
Проверку по металлу границы сплавления делать не нужно, так как . Принимаем мм.
... балочные, рамные, арочные, висячие, комбинированные, причём как плоские, так и пространственные системы. Листовые конструкции являются тонкостенными оболочками различной формы и должны быть не только прочными, но и плотными. 1. КОМПОНОВКА В БАЛОЧНОЙ КЛЕТКЕ 1.1. Расчёт стального настила Определим отношение пролёта настила к его толщине из условия обеспечения допустимого относительного ...
... сопротивление стали Ry=240 Мпа = 24,5 кН/см2 -предел текучести стали Ru=360 Мпа = 37 кН/см2 Предельный прогиб стального листового настила: Предельный прогиб БН и ВБ: Предельный прогиб ГБ: Рассмотрим два варианта компоновки балочной площадки. 1) Нормального типа 2) Усложненного типа 2.1 Балочная клетка нормального типа Проектируем балочную клетку нормального типа. В ...
... 3,35<26,4- условие выполнено=> стенка балки обладает прочностью от местного давления. Проверка общей устойчивости балки - расчет на общую устойчивость не требуется. 5. СРАВНЕНИЕ ВАРИАНТОВ БАЛОЧНОЙ КЛЕТКИ. Таблица 10 Наименование элементов 1- вариант 2- вариант 3- вариант Расход стали, кг/ Количество балок, шт Расход стали, кг/ Количество балок, шт ...
... = 13,92 кН/см2; 2,65<13,92 – условие выполняется. Проверка жесткости: , (15) ; 0,0047<0,004 –жесткость балки обеспечена. qннаст+бн=0,71+0,260=0,97 кН/м2. 5. Проектирование составной балки Принимаем сталь С255, L=10 м, qн=10 кН/м2, pн=6 кН/м2, qннаст+бн=0,97 кН/м2, , tн=9 мм. Рисунок 4 – Расчетная схема главной балки Собственный вес балки принимаем ориентировочно ...
0 комментариев