9. Энергоактмивные дома для Сибири.
Суровые климатические условия Сибири, масштабы потребления топлива на цели отопления и горячего водоснабжения делают необходимым широкое развитие «солнечного» домостроения, чему в достаточной мере способствует гелиоэнергетическое изобилие южных районов Сибири. При индивидуальном жилищном строительстве в Сибири энергоактивное здание должно удовлетворять повышенным теплозащитным требованиям, иметь тройное остекление или установленные стеклопакеты. Отопление помещений первого этажа может эффективно решаться путем установки под жилыми помещениями бака-аккумулятора солнечной энергии, как источника низкопотенциальной тепловой энергии. В систему теплоснабжения энергоактивных зданий (круглогодично эксплуатируемых) должны включаться тепловой насос (для повышения потенциала тепловой энергии) и дополнительный источник энергии (для покрытия дефицита энергии в периоды длительных неблагоприятных погодных условий). (В.С.Степанов, профессор; к.т.н. И.И.Айзенберг, доцент; к.т.н. Е.Э.Баймачев)
10. Новые типы небольших энергоактивных зданий.
В ходе разработки принципиально новых типов небольших энергоактивных или,точнее, ветроактивных зданий с крышной ветроэнергетической установкой геликоидного типа, имеющей вертикальную ось вращения, авторами ведется поиск их оптимальных архитектурно-технических решений. Под небольшими ветроактивными зданиями подразумеваются здания, которые способны получать, как минимум, всю требующуюся для их эксплуатации энергию (без учета повышенного расхода технологической энергии в некоторых производственных зданиях) за счет расположенной над ними одной вертикально-осевой геликоидной ветроустановки (одно- или двухъярусной) с оптимальной для данного типа ветротехники мощностью генератора (не более 30 – 50 кВт) и экономически целесообразной тепловой гелиосистемы. Пока предлагаемые объекты, которые ассоциируются больше с энергетическими сооружениями, чем собственно со зданиями, воспринимаются даже многими специалистами некоторым скептицизмом. Вместе с тем спрос на рассматриваемые постройки должен появиться тогда, когда приоритетной задачей станет достижение максимально возможной энергоэффективности и экологической чистоты зданий. И произойти это может уже в связанных, главным образом, с динамическими нагрузками, шумом и электромагнитными полями, вызываемыми ветроустановкой, то их можно будет компенсировать за счет специфических строительных и технических приемов. Разрабатываемые ветроактивные здания позволяют, во-первых, экономить территорию, во-вторых, существенно сокращать объемы использования энергии, получаемой за счет сжигания ископаемого топлива, и, в-третьих, производить энергию даже в намного большем количестве, чем требуется для их эксплуатации. Излишки электроэнергии выгодно использовать для обеспечения частной производственной либо сельскохозяйственной деятельности или направлять в централизованные электросети. А такие сети являются самыми эффективными аккумуляторами электроэнергии. Кроме того, избыточная энергия – это и запасной энергетический ресурс для компенсации периодических спадов сезонной выработки возобновляемой энергии. Разрабатываемые ветроактивные здания должны иметь сбалансированные и равноценные по значимости архитектурно-технические, то есть архитектурные, конструктивные, конструктивно-технологические и инженерные решения. Причем объемно-планировочные построения следует осуществлять исходя из вполне определенных энергетических, экологических и экономических ограничений. Для оптимального функционирования всех инженерных систем предлагаемых зданий их следует автоматизировать. Величина отапливаемого объема ветроактивных зданий регламентируется мощностью и размерами ветроэнергетической установки. Но в любом случае ее габаритные размеры в плане не должны значительно превышать соответствующих размеров отапливаемой части здания. При этом следует решать такую задачу: стремясь к увеличению размеров ветроустановки (для увеличения ее мощности) и уменьшению размеров здания (для уменьшения энергетической нагрузки), находить оптимальный вариант. Кроме того, существует необходимость лимитирования абсолютной высоты и абсолютной мощности ветроустановки. Представляется обоснованным применять в жилых и подобных им по основным параметрам общественных зданиях по возможности только одноярусные (однокаскадные) ветроустановки, а в производственных (в зависимости от их размеров и энергопотребления) – одноярусные или двухъярусные (двухкаскадные). (Бумаженко О.В.)
Заключение.
Наиболее перспективным классом современных архитектурных объектов следует признать энергоактивные здания и комплексы, при этом объективная тенденция к полному замещению в энергобалансе зданий традиционных источников энергии альтернативными с учетом длительных (до 100 лет) сроков эксплуатации большинства капитальных зданий требует проектных решений, которые обеспечивали бы возможность наращивания энергоактивности зданий с течением времени, т.е. возможность поэтапной модернизации энергетической структуры объекта от состояния энергоэкономичности к использованию энергии природной среды пассивными, а затем и активными средствами. Экономически наиболее эффективными, а значит, пригодными к широкомасштабному использованию в массовом строительстве являются сегодня пассивные средства использования энергии природной среды, а также ветроэнергетические установки малой и средней мощности (для получения электроэнергии) и тепловые насосы, позволяющие утилизировать низкопотенциальную энергию различных сред (воздуха, грунта, водоемов и т.п.) в целях отопления и горячего водоснабжения; при этом наилучшие экономические результаты дает комбинированное использование пассивных и активных энергосистем. В современных условиях при выборе средств использования энергии природной среды решающее значение приобретают их потребительские качества - стоимость и простота эксплуатации. Наиболее прогрессивной архитектурной концепцией, опыт реализации которой демонстрирует возможность комплексного и притом высококачественного решения широкого круга экономических, экологических и социокультурных проблем, можно признать концепцию биоклиматической архитектуры.
Однако, следует отметить, что объективная необходимость полной замены традиционных энергоносителей в ближайшие 50 лет в условиях господствующей ориентации на среднюю энергоактивность новых зданий и их все еще небольшое количество в общем объеме обусловливает рост актуальности проблемы индустриализации производства энергии от возобновляемых природных источников, в частности, интеграцией в единые производственные комплексы технических систем, ориентированных на использование и традиционных, и альтернативных источников энергии.
1. Программное обеспечение инженерных расчетов в области строительства: состояние и направления строительства. Известия вузов «Строительство». № 6 (498) -2000. 2 ВНИИГМИ-МЦЦ ( www . meteo . ru ).
2. Т. А. Маркус, Э. Н. Моррис. Здания, климат, энергия. Пер. с англ. под ред. Н. В. Кобышевой, Е. Г. Малявиной. - Ленинград, Гидрометеоиздат, 1985. - 544 с.
3. Энергоактивные здания/ Н. П. Селиванов, А. И. Мелуа, С. В. Зоколей и др.; Под ред. Э. В. Сарнацкого и Н. П. Селиванова. - М.: Стройиздат, 1988. - 376 с.
4. У.А.Бекман, С.А.Клейн, Дж.А.Даффи. Расчет солнечного теплоснабжения. – М.: Энергоиздат, 1982. - 79 с.
5. www.engenegr.ru Электронный журнал энергосервисной компании «Экологической системы» №1, январь 2004г, Бумаженко О.В.
6. www.sciteclibrary.com Аналитические обзоры «Энергоэффективное строительство», Жуков Д.Д., Лаврентьев Н.А.
7. www.LIB.ru «Теплоснабжение зданий с использованием систем утилизации солнечной энергии», д.т.н. В.С.Степанов, профессор; к.т.н. И.И.Айзенберг, доцент; к.т.н. Е.Э.Баймачев (В качестве исходной информации использованы результаты экспериментов, проведенных авторами в г. Иркутске на собственной модели солнечного коллектора (рис. 2. Приложение 3).
Приложение 1.
Приложение 2.
Приложение 3.
... легких панелей навешиваться на торцы поперечных стен. Заключение Таким образом, в работе даны основные архитектурно-планировочные решения одноэтажной жилой застройки. В соответствии с предложенными типами предложены конструктивные решения в строительстве одноэтажного жилого дома. Частная собственность на землю, земельные участки дает полную свободу в выборе архитектурно-планировочных ...
... интерес, чем же форма шатра так обаяла наших далеких предков, что заставила искать столь изысканное конструктивное решение. Ответ может подсказать архитектурная эниология — наука об энергоинформационном обмене в архитектуре. Основу шатра представляет собой пирамида кровли, ограниченная «юбкой» карнизного свеса, являющаяся постоянным генератором формового торсионного поля. Это поле, в ...
... , в зданиях. Еще в начале прошлого века человек с успехом пользовался этими явлениями. На рубеже XIX и XX веков делались попытки создания различных технических устройств обуздания и использования энергии солнца и ветра, его второй производной. Но за последние 100 лет, несмотря на интенсивное развитие технологии, эти два энергоносителя, так верно служившие человеку, были незаслуженно забыты. ...
... 2010-2015 гг. во многих государствах достигнет или превзойдет 10%. Здесь можно дискутировать только о темпах роста данного показателя, но сам факт роста не подвергается сомнению. Энергия солнца. Возможности использования в России и на Урале С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, ...
0 комментариев