3.4 Електричний розрахунок первинного перетворювача

Проведемо розрахунок первинного перетворювача за допомогою схеми електричної принципової первинного перетворювача (рисунок 12) .


Рисунок 12 – Схема первинного перетворювача електрична принципова

Проведемо розрахунок опорів суматора, тобто ОП з диференційним входом. Такий суматор повинен виконує віднімання напруг на виході мостової схеми. Саме тому для нього вірні наступні вимоги:

R7 = R8 та R6 = R9.

Таким чином задамося опорами так:

R7 = R8 =1кОм

R6 = R9 = 1кОм.

R6 С2-23-1кОм, Р=0,125Вт, 1%

R7 С2-23-1кОм, Р=0,125Вт, 1%

R8 С2-23-1кОм, Р=0,125Вт, 1%

R9 С2-23-1кОм, Р=0,125Вт, 1%

З попередніх розрахунків відомо:

L1 =1мкГн...1мГн.

L2 =1мГн.

Оскільки для зрівноваженого моста R4= R5 .

Таким чином задавшись R4 = R5 =1кОм проведено вибір усіх елементів

схеми.

R4 С2-23-1кОм, Р=0,125Вт, 1%

R5 С2-23-1кОм, Р=0,125Вт, 1%

L2 LP183-1мГн

L1 LPТ220-1мкГн-1мГн

 

3.5 Електричний розрахунок перетворювача

На рисунку 13 зображена схема АМВ електрична принципова.

Рисунок 13 – Схема АМВ електрична принципова

Розрахуємо опір.

Вхідні данні:

Частота модуляції fmax= 100кГц

Umax=5В

Визначимо напругу живлення за заданою амплітудою вихідних імпульсів:

*=(1,2…1,4)=6…7В.

Оберемо *=12В.

Оскільки частота f= 100кГц, задавшись ємністю конденсатора С1=1000пФ розрахуємо значення резистора R1:

(36)

R1 С2-23-8,2 кОм, Р=0,125Вт,

А також конденсатор:

С1 КМ6М47-1000пФ ,20%

Проведемо розрахунок опорів R2 R3 :

Оскільки на виході операційного підсилювача необхідно забезпечити рівень напруги 5 В, то коефіцієнт підсилення , а отже R2=R3, то задамося:

R3 С2-23-1кОм, Р=0,125Вт, 1%

R2 С2-23-1кОм, Р=0,125Вт, 1%

3.6 Визначення похибки

Основна неточність може виникнути в зв’язку з неідеальністю ОП.

Оскільки , , .

Ом, Ом.

R11=100кОм R10=1,01кОм

Реальний коефіцієнт підсилення реального ОП можна визначити за формулою:

(37)

Визначимо похибку:

.  (38)

Значення реальної похибки 0,3%, що не перевищує значену допустиму похибку 1%. Отже, можна зробити висновок, що розрахунок зроблений з задовільною точністю.


4 Моделювання одного з вузлів

Проведемо моделювання одного з вузлів перетворювача з метою впевнитись у його працездатності. Проведемо моделювання підсилювача напруги (рисунок 14). Підставимо всі обрані вище номінали. На вхід підсилювача подаємо імпульси прямокутної форми (рисунок 15) . Напруга вхідного сигналу складає 1мВ.

Рисунок 14 – Підсилювач напруги

Рисунок 15 – Амплітуда вихідної напруги при К=100




Висновки

В курсовому проекті докладно були описані головна мета, основне призначення та області застосування перетворювача індуктивність-напруга. Також була розглянута поетапна розробка та розрахунок кожного з елементів схеми, приведені структурні схеми окремих каскадів, моделювання одного з вузлів та визначено значення похибки.

Нещодавно конструктори відносилися з упередженням до індуктивних датчиків, вважаючи, що схеми з індуктивними датчиками не забезпечують ні достатньої точності, ні стабільності роботи приладів. Вважалося обов'язковим для одержання стійкого сигналу на виході індуктивного датчика подавати на нього напругою високої частоти, що досягає сотень кілогерц, а іноді навіть десятків мегагерц. Наявність такої високої частоти у свою чергу приводило до втрат у паразитних індуктивностях, сполучних проводах і т.п. Для того щоб підвищити амплітуду сигналу, що знімається з індуктивного датчика, і поліпшити стабільність показань, деякі автори розробок застосовували в першому каскаді підсилювача електрометричні лампи, що допускають включення сотень мегом у ланцюг керуючої сітки і т.д., однак усі ці міри мало поліпшували стабільність систем з індуктивними датчиками й у той же час значно ускладнювали конструкцію приладів.

Проведені в даний час роботи показали, що причина нестабільності роботи систем з індуктивними датчиками лежить у неправильному підході конструкторів до проектування датчиків, зокрема, у неправильному розташуванні ізолюючих елементів конструкції, нестабільність властивостей яких і приводить до помилок у роботі систем. Ці труднощі виявилися переборними, і вже створені прилади з індуктивними датчиками, що забезпечують високі точності і стабільність роботи, що витримують важкі режими експлуатації.  В даний час установлено, що індуктивні датчики володіють цілим колом переваг у порівнянні з іншими датчиками. До їхніх достоїнств відносяться:

- необхідність дуже малих зусиль для переміщення рухливої частини;

-мале споживання енергії;

-простота виготовлення;

-використання дешевих матеріалів;

-висока точність і стабільність роботи систем з індуктивними датчиками;

-можливість широкого регулювання приладів з деякими типами індуктивних датчиків.

До недоліків індуктивних перетворювачів варто віднести залежність точності від температури, високі вимоги до опору кріпильних ізолюючих деталей і необхідність роботи на підвищеній (у порівнянні з 50 гц) частоті. Однак у більшості випадків кріплення індуктивних датчиків можуть бути виконані і зі звичайних матеріалів, а практика показує, що індуктивні датчики дають гарні результати.

Цінні якості індуктивних перетворювачів - мала величина механічного зусилля, необхідного для переміщення його ротора, можливість регулювання виходу системи, що стежить, і висока точність роботи - роблять індуктивні перетворювачі незамінними в приладах, у яких допускаються погрішності лише в соті і  навіть тисячні частки відсотка, а тому необхідно індуктивні перетворювачі розвивати й освоювати.


Информация о работе «Перетворювач індуктивність-напруга»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 28771
Количество таблиц: 1
Количество изображений: 16

Похожие работы

Скачать
106974
8
31

... на автономне (не пов'язану з мережею змінного струму) навантаження. Як навантаження автономного інвертора може виступати як одиничний споживач, так і розгалужена мережа споживачів. 2.1 Джерела безперебійного та гарантованого електроживлення Під гарантованим живленням (ГЖ) варто розуміти забезпечення апаратури зв'язку й засобів автоматизації електроенергією в будь-яких режимах роботи системи ...

Скачать
21611
2
6

... частот вхідного сигналу 0…20 кГц, амплітуда на виході – 15В, опори навантаження 5 Ом, похибка ≤1%. Необхідно розрахувати значення кожного з елементів схеми перетворювача напруга – тривалість імпульсу та згідно розрахункам вибрати необхідні операційні підсилювачі, транзистори. При проектуванні індуктивних перетворювачів варто звертати увагу на екранування проводів, вибір ізоляції, усунення ...

Скачать
30202
3
10

... до 80 разів в дітей. [3]. Динамічний діапазон підйому/спаду грудної клітки (стінки черевної порожнини) може складати від десятих долей сантиметра до 5-10 сантиметрів. Тому вимірювальний перетворювач частоти дихання повинен характеризуватися відповідною чутливістю та роздільною здатністю. 3. ПОБУДОВА СХЕМИ ПЕРВИННОГО ВИМІРЮВАЛЬНОГО ПЕРЕТВОРЮВАЧА ТА РОЗРАХУНОК ПАРАМЕТРІВ ЕЛЕМЕНТІВ 3.1 Побудова ...

Скачать
26292
0
9

... прямою, але не рівномірною. Цю схему використовують для вимірювання малих опорів. 1 Розробка технічного завдання Метою курсового проекту є розробка вимірювального перетворювача опір - тривалість імпульсу і його принципової схеми. Також метою даної роботи є придбання навиків аналітичного розрахунку перетворювача по заданим вимогам. Електронними підсилювачами називають пристрої, призначені для ...

0 комментариев


Наверх