Преобразование случайных сигналов в безынерционных нелинейных и инерционных линейных цепях

13051
знак
1
таблица
17
изображений
КАЗАНСКИЙ ГОСУДАРСТВЕНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

им. А. Н. ТУПОЛЕВА

Институт радиоэлектроники и телекоммуникаций

Кафедра РИИТ

КУРСОВАЯ РАБОТА

по курсу: «Радиотехнические цепи и сигналы»

на тему: «Преобразование случайных сигналов в безинерционных нелинейных и инерционных линейных цепях»

Выполнил: Мулюков Р. Р.

Группа: 5201

Проверил: Козлов В.А.

Казань 2010

Задание

1.  Произвести генерацию случайного сигнала X(n) с равномерным законом распределения, заданным математическим ожиданием mX0 и среднеквадратическим отклонением X0.

2.  Изменяя длину участка реализации N (1 N 1024) определить с помощью критерия  такую длину участка реализации N0, для которой вероятность Р, с которой статическое распределение выборки из N значений может считаться соответствующий теоретическому распределению, будет достаточно близка к единице, а величины mXN0 и XN0 достаточно близки к заданным mX0 и X0. В дальнейшей работе использовать этот объем выработки.

3.  Определить корреляционную функцию Rx() и энергетический спектр Wx() исходного сигнала X(n), построить их графики указав масштаб по осям времени и частот соответственно. Определить тип случайного процесса X(n) – широкополосный или узкополосный.

4.  Аппроксимировать закон распределения случайного процесса X(n). По найденной функции Р(х) и указанной в задании нелинейной характеристике Y = f(x) определить теоретически функцию P(y) – закон распределения отклика безынерционного нелинейного элемента на воздействие случайного элементы X(n). Построить график функции P(y)

5.  Провести преобразование случайного процесса X(n) в безынерционной нелинейной цепи с указанной в индивидуальном задании нелинейной характеристикой Y = f(x). Для выборки N0 значений случайного процесса Y(n) получить m1YN0 и 1YN0, гистограмму, графики корреляционной функции Ry() и энергетического спектра случайного сигнала Wy(). Сопоставить гистограмму с графиком функции P(y). Указать, какие характеристики случайного процесса изменились в результате его передачи через безынерционную нелинейную цепь.

6.  Провести фильтрацию случайного процесса Y(n) цифровой моделью инерционной линейной цепи в индивидуальном задании характеристиками получили новый сигнал Z(n). Для выборки N0 значений случайного процесса Z(n) получить m1ZN0 и 1ZN0, гистограмму, графики корреляционной функции Rz() и энергетического спектра Wz(). Определить с помощью критерия x2 произошла ли нормализация случайного процесса Y(n) в результате его фильтрации в линейной цепи. Указать, какие характеристики случайного процесса изменились в результате его передачи через линейную цепь.

Параметры исходного сигнала X(n)

Вариант 27

mXN0 = -1,25 XN0 = 0,75 Т = 0.0004 с

Вариант нелинейности 3.4

Нелинейности

Y =

Параметры линейной цепи

Тип ПФ f0 = 500 Гц Q = 3


1.  Случайными называются сигналы (процессы), значение которых не могут быть предсказаны с полной достоверностью. Наибольшее распространение при описании случайных сигналов имеют математическое ожидание m1X0 = -1,25 (начальный момент 1-го порядка) и среднеквадратичное отклонение X0 = 0,75 (, где Dx – дисперсия [центральный момент 2-го порядка]). Если реализация случайного процесса X(t) задана в виде выборочной последовательности значений Xi, где i = 1,2,3, … N, то   математическое ожидание рассматривать как постоянную составляющую в спектре случайного сигнала, а дисперсию как среднюю мощность флуктуационной (переменной) составляющей.

2.  Одной из важнейших характеристик случайного процесса является плотность вероятности P(х) – функция, которая показывает, насколько часто повторяется (по времени) то или иное значение Х.

Для равномерного закона распределения

 P


Xmin = -2,525  0 Xmax = 0,042 X

Все значения в Х интервале от Xmin до Xmax встречаются одинаково часто.

Для точного определения одномерной плотности случайного процесса необходимо исследовать реализацию бесконечной длительности, что на практике нереально. Поэтому реально берут реализацию конечной длительности Тс и при ее изучении берут выборки с конечным шагом Т (в данной работе Т = 0.0004 с), число отсчетов случайного сигнала , подвергаемых обработке, всегда конечно, следовательно, вместо P(х) получают ее оценку в виде ее гистограммы.

Изменяя длину участка реализации N (1 N 1024) определим с помощью критерия 2 такую длину участка реализации N0, для которой вероятность Р, с которой статистическое распределение выборки из N значений может считаться соответствующим теоретическому распределению, будет достаточно близка к единице, а величины mXN0 и XN0 достаточно близки к заданным mX0 и X0.

Если реализация случайного процесса X(t) задана в виде выборочной последовательности значений Xi, где i = 1,2,3, … N, то для построения гистограммы находят Xmin и Xmax. Затем диапазон изменений X(Xmin  Xmax) разбивают на отдельные интервалы ширины X. Число интервалов Ni берут,

10  20.  

где nk – число отсчетов сигнала, попавший в k – интервал,  - теоре-тическая вероятность пребывания случайного сигнала в пределах каждого из интервалов X (в работе Ni = 10), N – общее число исследуемых отсчетов сигнала.

Пусть N = 100  = 3,6 mXN0 = -1,1635 XN0 = 0,7464

Пусть N = 200  = 9,8 mXN0 = -1,1533 XN0 = 0,7572

Пусть N = 300  = 10,6 mXN0 = -1,1803 XN0 = 0,7569

Пусть N = 400  = 8,8 mXN0 = -1,2014 XN0 = 0,7597

Пусть N = 500  = 6,68 mXN0 = -1,2082 XN0 = 0,7452

Пусть N = 600  = 8,07 mXN0 = -1,2143 XN0 = 0,7416

Пусть N = 700  = 6,4 mXN0 = -1,2196 XN0 = 0,7471

Пусть N = 800  = 5,77 mXN0 = -1,2368 XN0 = 0,7443

Пусть N = 900  = 7,51 mXN0 = -1,2265 XN0 = 0,7480

Пусть N = 1000  = 7,48 mXN0 = -1,2119 XN0 = 0,7473

В дальнейшей работе будем использовать объем выработки N = 100, т. к. критерий Пирсона имеет наименьшее значение.


3.  Энергетический спектр случайного сигнала Wx() показывает, как средняя мощность сигнала распределена по диапазону частот. Для большинства случайных сигналов ширина спектра теоретически бесконечно велика. Для оценки реальной ширины спектра вводят понятие эффективной ширины спектр э, которую можно определить как полосу частот, в пределах которой спектральная плотность средней мощности падает не более чем в 2 раза по сравнению с максимумом.

Корреляционная функция случайного процесса Rх() является внутренней мерой связанности процесса в различные моменты времени, отстоящие на , его свойства (помнить) предшествующие состояния следует интервал корреляции – это величина временного сдвига , начиная с которого значения сигнала X(t) и X(t+) могут считаться несвязанными.

Оценку величин интервала корреляции процесса к при известной корреляционной функции Rх() можно следующим образом: если процесс широкополосный, то к равен координате первого нуля функции Rх(); если процесс узкополосный, то к определяют по координате первого нуля огибающей функции Rх(). Корреляционная функция Rх() и энергетический спектр случайного сигнала Wx() связана между собой преобразованиями Фурье. Если реализация случайного процесса X(t) задана в виде выборочной последовательности значений Xi, где i = 1,2,3, … N, то

 , 0 k N1

где N1 – число отсчетов корреляционной функции и энергетического спектра (на 1  2 порядка меньше числа отсчетов сигнала N);

Т – интервал дискретизации сигнала.

 = 2Пf =  - шаг отсчета по частоте.

Корреляционная функция Rх(t) и энергетический спектр Wx(f) исходного сигнала изображены на рисунках (см. ниже). Это широкополосный сигнал. Т = 0.0004с; N1 = 10;


По графику корреляции видно что исследуется широкополосный сигнал, его интервал корреляции:

Энергетическая ширина спектра


Информация о работе «Преобразование случайных сигналов в безынерционных нелинейных и инерционных линейных цепях»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 13051
Количество таблиц: 1
Количество изображений: 17

Похожие работы

Скачать
122207
9
72

... МПа, пределы измерений 0…1,6 МПа МС-П2 3 по месту Приборы в спецификации могут быть сгруппированы по позициям на схеме или по маркам. Часть 3. Современные системы управления производством. 1. Структура АСУ ТП. Характерной особенностью развития современной электронной промышленности является бурный рост, сопровождающийся столь же бурным снижением стоимости средств ...

Скачать
41676
0
1

... — дифференциальные параметры. Между двумя этими терминами не существует однозначной эквивалентности, но почти всегда речь идет об одном и том же. В качестве примера можем рассмотреть такой важный параметр биполярного транзистора, как коэффициент передачи тока базы в схеме с ОЭ (). У этого параметра есть еще одно часто встречающееся обозначение, идущее от его роли в системе так называемых h- ...

Скачать
86436
5
26

... этому каналу. Этот сдвиг составляет примерно 10 ч, что хорошо согласуется с экспериментальными данными, приведенными выше. Из сказанного следует, что статические и динамические характеристики доменного процесса могут быть получены известными аналитическими – балансовыми расчетами, составлением дифференциальных уравнений, экспериментальными методами нанесения пробных возмущений или статистическими ...

0 комментариев


Наверх