2. Трактовка схемных решений для автогенератора.
Автогенератор выполнен по осциляторной схеме(емкостная трехточка). Выбор осциляторной схемы объясняется большей надежностью автогенератора, по сравнению со схемой с кварцем в цепи обратной связи, где кварц не всегда гарантирует контроль генерируемой частоты.
Выбор емкостной трехточки объясняется тем, что обе индуктивные трехточки имеют существенные недостатки:
1) кварц шунтируется большой емкостью база-эмиттер транзистора(1-10 пФ), при включении кварца между базой – эмиттером
2) при включении кварца между коллектором и эмиттером, блокировочная индуктивность вносит свой вклад в значение генерируемой частоты, плюс к кварцу приложено большое напряжение питания.
Схема включения управителя частоты выбрана из следующих соображений: в кварцевом автогенераторе управляющую реактивность следует подключать к элементу, главным образом определяющим частоту, т.е. к кварцевому резонатору, при этом либо последовательно либо параллельно. Варианты подключения приведены на рис. 2.
Четвертый вариант наихудший, так как параллельно кварцу стоит индуктивность, которая может определять генерируемую частоту. Первый и второй варианты имеют общий недостаток: сужается полоса, где кварц имеет индуктивный характер. Наиболее приемлем третий вариант, при котором понижается частота последовательного резонанса, но расширяется полоса, где кварц имеет индуктивное сопротивление. Для применений третьего варианта необходима управляемая индуктивность, которую легко реализовать, включив последовательно с варикапом индуктивность такой величины, чтобы суммарное сопротивление на частоте генерации носило индуктивный характер.
В качестве согласующего звена выбран параллельный колебательный контур. Выбор такого схемотехнического решения объясняется тем, что он обеспечивает необходимую фильтрацию высших гармоник и прост в эксплуатации.
Усилитель звуковой частоты собран на операционном усилителе DA1, коэффициент усиления определяется соотношением элементов R14, R15, C12. По сути приведенное в схеме включение ОУ является активным ВЧ фильтром.
Емкость С12 имеет большую величину и определяет «завал» АЧХ на малых частотах (0-150 Гц), что объясняется шириной спектра необходимой для разборчивого приема речевых сообщений(от 0,3 до 3 кГц).
Цепочка R17, R18 представляет собой делитель напряжения, создает «псевдо» двухполярное питание. Емкость С15 стабилизирует значение виртуальной земли(6 В), фильтруя возможные ВЧ составляющие питающего напряжения.
Нагрузкой УЗЧ является резистор R11. С него, через ограничивающий выходной ток усилителя резистор R10, напряжение подается на пассивный ФНЧ, который представляет собой простую RC цепь с передаточной характеристикой:
где fc=1/(2*pi*R*c) – частота среза.
В нашем случае fc=3.386 кГц.
С выхода фильтра сигнал через блокировочную емкость С7 поступает на переменный резистор R2. Резистором R2 мы задаем диапазон изменения модулирующего напряжения, т.е. глубину модуляции. Подбираем значение сопротивления так, чтобы при максимально возможных значениях модулирующего напряжения не выходить за пределы линейного участка вольт-фарадной характеристики варикапа VD1, который управляет частотой генерации автогенератора.
Резистором R6 задаем смещение на варикапе VD1, т.о. чтобы в режиме молчания емкость варикапа соответствовала середине линейного участка его ВФХ.
R5 ограничивает величину постоянного тока протекающего по цепи: +12В, R6, R5, VD1, R2, 0В.
Автогенератор собран на транзисторе VT1, по схеме емкостной трех точке с заземленным коллектором(С3 – эммитер-коллектор; С2 – база-эммитер; VD1, ZQ1, L1 – база-коллектор). Суммарное сопротивление цепи VD1, ZQ1, L1 носит индуктивный характер. Переменная емкость L1 позволяет устанавливать частоту генерации АГ в режиме молчания равную 13,6 МГц. Резистор R4 выполняет роль цепи автосмещения.
Полученные колебания через блокировочную емкость С5 поступают на истоковый повторитель(класс А), который собран на транзисторе VT2. Использование повторителя обеспечивает: 1. согласование по сопротивлению с последующими каскадами передатчика, 2. усиление колебаний по напряжению в К раз.
С выхода повторителя сигнал поступает на предварительный усилитель собранный на транзисторе VT3(класс В). Цепочка R13, C10 выполняет роль цепи автосмещения по постоянному току, отслеживает положение рабочей точки во вторичной обмотке. Использование такого трансформатора позволяет легко произвести умножение частоты на два.
Умножитель собран на параллельно включенных разнополярных транзисторах VT4, VT5. Оба транзистора работают в режиме В. На входы транзисторов поступают противофазные напряжения со вторичной обмотки трансформатора Т1. В результате получаем колебания с удвоенной частотой.
При использовании такого способа умножения, необходимо чтобы оба плеча были симметричны, т.е. чтобы коэффициенты усиление были равны. Симметричность обеспечивает Переменный резистор R16(цепь автосмещения по постоянному току).
Нагрузкой умножителя является трансформатор сопротивления Т2, который согласует умножитель с оконечным каскадом. Колебательный контур вторичная обмотка Т2, С17, С18 обеспечивает предварительную фильтрацию ВЧ гармоник и согласование с оконечным каскадом.
Оконечный каскад собран на транзисторе VT6. Цепь R20, R21, VD2 задает внешнее смещение, которое задает режим В. Цепочка R22, C20 выполняет роль цепи автосмещения по постоянному току. Нагрузкой ОК является параллельный контур С23, С24, L3 настроенный на 27,2 МГц. Трансформатор Т3 обеспечивает согласование по сопротивлению ОК с колебательным контуром. Подстроечным конденсатором настраиваем контур в резонанс на частоте 27,2 МГц. Выделяемые контуром колебания излучаются штыревой антенной WA1 в пространство.
В заданной схеме оконечный каскад усилителя выполнен на транзисторе КТ904, который имеет следующие параметры:
Сопротивление насыщения транзистора: rнас ВЧ = 1,73 Ом;
Сопротивление материала базы rб= 3 Ом;
Постоянная времени коллекторного перехода: τK = 15 пс;
Сопротивление эмиттера: rэ ≈ 0,0 Ом;
Коэффициент усиления по току в схеме с ОЭ: βо = 24;
Граничная частота усиления по току в схеме с ОЭ: fт = 350 МГц;
Барьерная емкость коллекторного перехода: Ск = 12 пФ;
Барьерная емкость эмиттерного перехода: Сэ = 124 пФ;
Индуктивность эмиттерного вывода: Lэ = 4 нГн;
Индуктивность базового вывода: Lб = 4 нГн;
Индуктивность коллекторного вывода: Lк = 4 нГн;
Максимальная выходная мощность: Рmax= 5 Вт;
Предельно допустимая постоянная величина коллекторный ток: Ik0.max =0.8 А;
Предельно допустимое напряжение коллектор-эмиттер: Uкэ.max = 40 В;
Предельно допустимое напряжение база-эмиттер: Uбэ.max = 4 В;
Напряжение отсечки: Е’= 0,7 В;
Схема включения: ОЭ.
4.1. Расчет коллекторной цепи выходного каскада.Расчет коллекторной цепи проводится по методике, изложенной в [2], для транзистора, работающего в критическом режиме с углом отсечки – Q= 90° .
Исходные данные для расчета следующие:
Р1=1,5 Вт – колебательная мощность транзистора,
В – напряжение питания коллектора, в расчете будем подставлять напряжение меньшее ЕК в 0,9 раз, т.к. будут потери по постоянному току в блокировочном дросселе.
rнас ВЧ = 1,73 Ом – сопротивление насыщения транзистора,
Iк0. max= 0,8 А – допустимая постоянная составляющая коллекторного тока;
Таблица 1 Коэффициенты разложения косинусоидального импульса
Формула | Значение |
0,319 | |
0,319 | |
0,5 | |
0,319 | |
0,5 |
1. Коэффициент использования по напряжению в критическом режиме ;
2. Максимальное значение коллекторного тока
А
3. Амплитуда первой гармоники напряжения на коллекторе в критическом режиме
В;
4. Амплитуда первой гармоники коллекторного тока
А;
5. Постоянная составляющая коллекторного тока
А;
6. Мощность, потребляемая от источника коллекторного питания Вт;
7. Коэффициент полезного действия коллекторной цепи
;
8. Мощность, рассеиваемая на коллекторе транзистора
Вт;
9. Сопротивление коллекторной нагрузки
Ом;
4.2. Расчет входной цепи оконечного каскада.1. Величина шунтирующего добавочного сопротивления
Ом;
2. Амплитуда тока базы
А,
где
3. Максимальное обратное напряжение на эмиттерном переходе
В
4. Постоянные составляющие базового и эмиттерного токов
5. Напряжение смещения на эмиттерном переходе
6. Значения Lвх оэ, rвх оэ, Rвх оэ, Свх оэ в эквивалентной схеме входного сопротивления транзистора.
7. Резистивная и реактивная составляющие входного сопротивления транзистора (Zвх=rвх + jXвх)
8. Входная мощность
9. Коэффициент усиления по мощности
Исходными данными для расчета параметров антенны являются
- длина антенны la=1.8м,
- длина волны l=с/f=(3*108)/(27.2*106)=11.02 м,
- радиус антенны r=8мм.
Найдем волновое сопротивление антенны:
Поскольку длина антенны меньше четверти длины волны, то
Найдем входное сопротивление антенны:
Ом
где
Zа=ra+jxa
Активная составляющая ra = 2,8 Ом
Реактивная составляющая xa= - 223 Ом
Емкость С22 и индуктивность L2 предназначена для разделения по постоянной составляющей тока Iк0, реактивное сопротивление ХС22 должно удовлетворять соотношению:
ХC22 << Rое = 4Rк, (ХС22 = Rое/[100…200])
XC22 = (wC22 )-1= 4Rк/150 Þ
С22 = 150/(4*31,49*2*3,14*27,2*10-6) = 6,96 (нФ);
Реактивное сопротивление ХL2 должно удовлетворять соотношению:
XL2 >> Rое = 4Rк, (ХL2 = Rое*[50…100])
XL2 = wL2 = 4Rк*75 Þ
L2 = 4*31,49*75/(2*3,14*27,2*10-6) = 55,3 (мкГн).
6.2. Расчет колебательного контураДля определения номиналов элементов (С23, L3) колебательного контура пересчитаем сопротивление антенны в контур следующим образом:
|
Рис. 2 Пересчёт сопротивления антенны в контур
Сопротивление на зажимах контура равно 4Rк.
Допустим r=250-400 Ом, примем r=300 Ом.
r=1/w*ck=w*L3
Общая емкость контура равна :
Из ниже приведенных формул легко получаем уравнение для С23:
Решая это уравнение получаем
Список использованной литературы.
1. Проектирование радиопередающих устройств: Учебное пособие для вузов/ В. В. Шахгильдян, В.А. Власов, Б.В. Козырев и другие.; Под ред. В.В. Шахгильдяна. – 3-е изд., перераб. и доп. – М.: Радио и связь, 1993, 512 с., ил.
2. Шумилин М.С., Козырев В.А., Власов В.А. Проектирование транзисторных каскадов передатчиков: Учебное пособие для техникумов.- М.: Радио и связь, 1987, 320 с., ил.
... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...
... ЧМ. ФНЧ, выполненный на интегрирующей RC-цепочке, ограничивает спектр сигнала до 3,5 кГц. Модулирующий сигнал, усиленный и прошедший цепи коррекции поступает на варикап ГУНа, где производится частотная модуляция несущего колебания. ГУН выполним по схеме Клаппа, его центральная частота управляется с помощью второго варикапа, на который управляющий сигнал подается с цифрового синтезатора частоты, ...
... доводится линейным усилителем мощности, число каскадов в котором определяется величиной сквозного коэффициента усиления: КР = Р1/РВХ, где Р1 - мощность в коллекторной цепи оконечного каскада передатчика, РВХ - мощность однополосного сигнала на выходе ФНЧ (10). Цепи связи промежуточных каскадов делают широкополосными, перекрывающими весь диапазон передатчика. Здесь не ставится задача фильтрации ...
... hЦС = 0,7. Мощность, на которую следует рассчитывать ГВВ, равна: Р1 = РФ/hЦС = 6 / 0,7 = 8,57 Вт. Справочная величина мощности, отдаваемой транзистором, должна быть не менее 12 Вт. В однополосных связных передатчиках используются биполярные транзисторы коротковолнового диапазона (1,5-30 МГц) с линейными проходными характеристиками. По диапазону частот и по заданной мощности можно выделить ...
0 комментариев