1. Пространственное усреднение освещенности в пределах апертуры каждого элемента ФПЗС.
2. Выборку (дискретизацию) сигнала Е (x', y') с конечным шагом dх, dy.
3. ПЧ – фильтрацию, определяемую размерами одного элемента ФПЗС.
Пусть ФПЗС – матрица состоит из одинаковых прямоугольных элементов размером ах х ау, и расстояниями между их центрами dх и dy
Усредняющая выборка представляется в виде
При этом ограниченность размеров ПЗС-матрицы (количества элементов) не учитывается, т. к. размер ФЧЭ много меньше длины строки:
Спектр пространственной выборки
Спектр представляет собой последовательность дельта-функций с амплитудами, умноженными на модуляционную функцию ПЗС-матрицы.
Частота элементов (частота дискретизации изображения) .
Распределение освещенности содержит только нечетные гармоники
Рис. 15
Рассмотрим произвольный случай, когда
Тогда коэффициент передачи модуляции
при k=1 m=0.935
при k=3 m=0.505
при k=5 m=0
Осуществим модуляцию по третьей гармонике
Выражение для пространственного распределения выборочного потока излучения запишется в виде:
Рис. 16
Рассмотрим предельный случай, когда
Тогда коэффициент передачи модуляции
при k=1
Таким образом, коэффициент передачи модуляции на первой гармонике равен 0,64.
Выражение для пространственного распределения выборочного потока излучения запишется в виде:
Построим пространственное распределение выборочных значений потоков излучения
Рис. 17
Яркость видеоконтрольного устройства высчитывается по формуле
Для произвольного случая
Рис. 18
Для предельного случая
Рис. 19
d. Расчет требуемого отношения сигнал шум [4,7]
Поскольку в ТЗ заданы величины и , то в проектируемой ОЭС предполагается использовать правило решения на основе критерия Неймана – Пирсона. В этом случае требуемое ОСШ определяется следующим образом:
4. Описание конструкции
Все основные элементы конструкции устанавливаются на основание 1 и крепятся к нему с помощью винтов. В основании предусмотрены пазы для установки прибора в другое рабочее место.
Перископная насадка соединяется с основным блоком стойкой 9. Входное окно 1 клеится к прижимным планкам 7, которые соединяются со стенками 2 и 3. Юстировка наклона зеркала 1 осуществляется поворотом оправы 5 при помощи трех винтов 16, наклоняющих винт 15 с шаровой головкой на нужный угол относительно неподвижной крышки корпуса 4. Величина наклона ограничивается величиной зазора между винтом и отверстием в крышке.
Похожим образом осуществлено крепление сферического зеркала. Юстировка наклона осуществляется поворотом оправы 3 при помощи трех винтов 8, наклоняющих винт 10 с шаровой головкой на нужный угол относительно неподвижной крышки корпуса 2. Величина наклона ограничивается величиной зазора между винтом и отверстием в крышке. Крышка корпуса с помощью винтов 9 устанавливается на основании 4, которое в свою очередь привинчивается к стойке 11. С помощью юстировочных винтов на стойке можно регулировать положение сборочного узла по двум осям. Стойка устанавливается на основании корпуса прибора.
Плоское зеркало прижимается к прокладке 11 винтами 7 и 9, благодаря зазору можно регулировать положение зеркала в плоскости, перпендикулярной оптической оси. Оправа 3 крепится к крышке 2 четырьмя винтами 8. Вся конструкциями винтами 10 устанавливается на стойке, где с помощью юстировочных винтов можно регулировать положение сборочного узла по двум осям. Стойка устанавливается на основании корпуса прибора.
Похожая конструкция крепления осуществлена в случае двух сферических зеркал. Разница лишь в том, что они наклеиваются на оправу 3. Между крышкой корпуса 2 и оправой 3 есть прокладка 5. С помощью винтов 8 можно регулировать положение зеркал вдоль оптической оси. Вся конструкциями винтами 9 устанавливается на стойке 6, где с помощью юстировочных винтов можно регулировать положение сборочного узла по двум осям. Стойка устанавливается на основании корпуса прибора.
Оптическая система удерживается в оправе тонкой кромкой, которая приобретает свою конечную форму в результате пластического деформирования металла во время завальцовки. В корпус 8 помимо оправы 1 также вкручивается втулка 7. Благодаря зазорам можно перемещать оптическую систему в плоскости, перпендикулярной оптической оси. После центрировки конструкция блокируется зажимным кольцом 2 и винтами 9. Вдоль оптической оси объектив передвигается по резьбе и стопорится винтами через корпус 4.
После сборки и юстировки все винты замазываются эмалью, а конструкция контролируется по инструкции И-1.
Заключение
В данном курсовом проекте была разработана стереовидеокамера. Выбрана наиболее подходящая оптическая схема для получения требуемых результатов измерения. В ходе габаритного и светоэнергетического расчетов определены ее основные параметры и характеристики системы. Спроектированная система удовлетворяет требованиям, сформулированным в ТЗ и предоставляет широкие возможности по вариации рабочих параметров. Данный прибор будет в дальнейшем усовершенствоваться.
0 комментариев