3. Расчет возбудителя
Схема возбудителя с кварцевой стабилизацией.
Выбираем транзистор КТ312А.
Приведем параметры, применяемые при расчете:
Определим коэффициент обратной связи:
( – динамическое сопротивление кварца, – коэффициент регенерации, – нормированное управляющее сопротивление)
, где – фаза крутизны ,
– обобщенная расстройка –
– затухание кварца.
Для заданной частоты – 10,1 МГц – =10 пФ, = 80 Ом
Рассчитаем емкость , включенную между базой и эмиттером:
Тогда, емкость , включенная между эмиттером и коллектором, будет равна:
Вычисляем функцию угла отсечки:
– характеристическое сопротивление кварца (=0,025 Гн)
– добротность кварца
По таблицам значений Берга, это значение соответствует .
Расчет коллекторной цепи возбудителя
Выбираем напряжение на коллекторе .
В генераторе необходимо развить мощность, требующуюся для возбуждения следующего каскада с учетом потерь в согласующей цепи:
1. Коэффициент использования коллекторного напряжения:
2. Амплитуда напряжения на коллекторе:
3. Амплитуда первой гармоники коллекторного тока:
4. Амплитуда импульсов коллекторного тока:
.
5. Постоянная составляющая постоянного тока:
6. Эквивалентное сопротивление нагрузки, обеспечивающее рассчитываемый режим:
7. Мощность, потребляемая от источника питания:
8. Мощность, рассеиваемая на коллекторе:
При этом, мощность, рассеиваемая на коллекторе, меньше предельно допустимой.
9. КПД коллекторной цепи:
Расчет базовой цепи возбудителя
1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на высшей частоте:
Т.к. угол дрейфа меньше , то считаем, что и .
4. Амплитуда переменного напряжения на переходе эмиттер-база:
5. Модуль коэффициента передачи напряжения с входа на переход эмиттер-база:
6. Амплитуда напряжения возбуждения:
7. Входное сопротивление:
8. Мощность возбуждения:
9. Первая гармоника тока базы:
10.
11. Напряжение смещения, обеспечивающее заданный угол отсечки базового тока:
12. Сопротивление в цепи базового смещения, обеспечивающее заданное напряжение смещения R = 4590 Ом.
4. Расчет умножителя частоты
Для умножения частоты в 10 раз нужно выбрать угол отсечки .
При таком малом угле отсечки резко увеличивается ток возбуждения, падает КПД и выходная мощность, поэтому, чтобы получить необходимую для следующего каскада мощность приходится применять мощный транзистор КТ904А
Схема умножителя:
В расчете требуются 10-е коэффициенты Берга: и .
Умножитель должен на 10-й гармонике развивать мощность 0,06 Вт.
Расчет коллекторной цепи
Напряжение питания: .
1. Коэффициент использования коллекторного напряжения:
2. Коэффициент использования коллекторного напряжения на 10‑й гармонике:
3. Амплитуда напряжения на коллекторе:
4. Амплитуда первой гармоники коллекторного тока:
5. Амплитуда десятой гармоники коллекторного тока:
6. Амплитуда импульсов коллекторного тока:
7. Постоянная составляющая постоянного тока:
8. Эквивалентное сопротивление нагрузки коллекторного контура на 10-й гармонике:
Расчет базовой цепи
1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на высшей частоте:
Т.к. угол дрейфа меньше , то считаем, что и .
4. Амплитуда переменного напряжения на переходе эмиттер-база:
5. Модуль коэффициента передачи напряжения со входа на переход эмиттер-база:
по графику определяем .
6. Амплитуда напряжения возбуждения, требуемая от источника возбуждения:
7. Входное сопротивление:
8. Мощность возбуждения:
9. Первая гармоника тока базы:
10. Реальная величина тока базы:
11. Напряжение смещения, обеспечивающее заданный угол отсечки базового тока:
Колебательный контур, на который нагружен транзистор, должен при частоте 100 МГц иметь эквивалентное сопротивление 1650 Ом:
Рассчитаем емкость и индуктивность:
Индуктивность на входе:
5. Расчет предоконечного каскада
Схема предоконечного каскада
В первой части расчета мощность возбуждения выходного каскада получилась равной 2,11 Вт. С учетом потерь в согласующей цепи. Зададим мощность предоконечного каскада: .
Исходя из требований по мощности и частоте, выберем транзистор КТ903А. Угол отсечки примем равным .
Расчет коллекторной цепи
Выбираем напряжение питания .
1. Коэффициент использования коллекторного напряжения:
2. Амплитуда напряжения на коллекторе:
3. Амплитуда первой гармоники коллекторного тока:
4. Амплитуда импульсов коллекторного тока:
5. Постоянная составляющая постоянного тока:
6. Эквивалентное сопротивление нагрузки, обеспечивающее рассчитываемый режим:
7. Мощность, потребляемая от источника питания:
8. Мощность, рассеиваемая на коллекторе:
При этом, мощность, рассеиваемая на коллекторе, меньше предельно допустимой.
9. КПД коллекторной цепи:
Расчет базовой цепи
1. Находим предельную частоту транзистора, при которой коэффициент передачи по току в схеме с общим эмиттером равен 1:
2. Рассчитываем время дрейфа транзистора:
3. Определим угол дрейфа на наивысшей частоте:
4. Нижний угол отсечки положительных импульсов эмиттерного тока:
Коэффициенты и , соответствующие углу отсечки : и .
5. Модуль коэффициента передачи по току на рабочей частоте:
где
6. Амплитуда первой гармоники тока эмиттера:
7. Амплитуда положительного импульса эмиттерного тока:
8. Постоянная составляющая тока эмиттера:
9. Амплитуда переменного напряжения на переходе эмиттер-база:
10. Модуль коэффициента передачи напряжения с входа на переход эмиттер-база:
по графику определяем .
11. Амплитуда сигнала возбуждения, требуемая от предыдущего каскада:
12. Входное сопротивление:
13. Мощность, требуемая от предыдущего каскада:
14. Первая гармоника тока базы:
15. Напряжение смещения:
16. Индуктивность на входе:
17. Емкость и индуктивность на выходе колебательного контура:
и
Расчет коэффициентов трансформации согласующих трансформаторов
1. Согласование возбудителя и модулятора.
2. Согласование модулятора и умножителя частоты.
3. Согласование умножителя частоты и предусилителя.
Список использованной литературы
1. «Радиопередающие устройства» – под ред. В.В. Шахгильдяна, РиС, 1996 г.
2. «Проектирование и техническая эксплуатация радиопередающих устройств» – Сиверс Г.А., РиС, 1989 г.
3. «Проектирование радиопередающих устройств» – под ред. В.В. Шахгильдяна, РиС, 1998 г.
... , обеспечивающий ослабление высших гармоник на 40 дБ вне рабочего диапазона частот передатчика в соответствии с техническим заданием (см. раздел 4 АСЧЁТ ВЫХОДНОГО ФИЛЬТРА). Поскольку в данной курсовой работе необходимо спроектировать только оконечный мощный каскад связного передатчика с ЧМ, то для конкретизации, входящие в его состав блоки обведены синей пунктирной линией, и именно о них далее ...
... числа умножителей частоты. Фазовая модуляция может использоваться не только для получения ФМ – колебаний, но и для получения ЧМ – колебаний (косвенный метод) путём преобразования ФМ в ЧМ. При проектировании передатчиков с ФМ необходимо, прежде всего, решить вопрос о месте модулятора в структурной схеме передатчика. Известны четыре наиболее распространённые структурные схемы передатчиков: q c ...
... усилителя. Также выходная цепь применяется для фильтрации выходного напряжения активного элемента от высших гармонических составляющих. Межкаскадные согласующие цепи применяются в многокаскадных радиопередатчиках для преобразования входного сопротивления АЭ последующего каскада в оптимальное сопротивление на выходных электродах АЭ предыдущего каскада.Связь с антенной В диапазоне коротких волн ...
... и для многих других специальных назначений. РПУ можно классифицировать по назначению, диапазону волн, мощности, виду модуляции, условиям работы и др. Эти признаки определяют специфику проектирования каждого вида передатчиков. Например, рабочий диапазон волн и мощность на выходе обуславливают выбор активного элемента и конструкцию колебательных систем. Амплитудную и импульсную модуляцию колебаний ...
0 комментариев