ФЕДЕРАЛЬНОЕ АГЕНСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ
ФЕДЕРАЦИИ
Государственное образовательное учреждение высшего профессионального образования
Ивановский государственный
химико-технологический университет
Факультет неорганической химии и технологии.
Кафедра ТП и МЭТ.
Реферат
Современные форматы видео
Выполнил:
студент 5 курса 14 группы
дневного отделения:
Поздеев М.Е.
Иваново – 2007
Содержание
Введение
Глава 1. Основные характеристики видео
1.1. Качество изображения
1.2. Эксплуатационные возможности
1.3. Плотность записи, стоимость 1 минуты записи и массогабаритные параметры носителя (для видеолент)
1.4. Затраты на приобретение и эксплуатацию техники
1.5. Количество кадров в секунду
1.6. Чересстрочная развёртка
1.7. Разрешение
1.8. Соотношение сторон экрана
1.9. Количество цветов и цветовое разрешение
1.10. Ширина видеопотока (для цифрового видео)
Глава 2. Видеостандарты
2.1. Цифровые
2.1.1. ATSC
2.1.2. DVB
2.1.3. ISDB
2.2. Аналоговые
2.2.1. MAC
2.2.2. PAL
2.2.3. NTSC
2.2.4. SECAM
2.2.5. MUSE
Глава 3. Форматы записи
3.1. Форматы аналоговой записи
3.1.1. VHS
3.1.2. Betacam SP
3.1.3. Video-8
3.1.4. MII
3.1.5. U-matic
3.1.6. Betamax
3.1.7. 2" Quadruplex
3.1.8. 1" Type C
3.1.9. S-VHS
3.1.10. VHS-C
3.1.11. Hi8
3.2. Форматы цифровой записи
3.2.1. Video CD
3.2.2. DVD
3.2.3. DivX
3.2.4. DV (miniDV)
3.2.5. SVCD, ASF, RM
3.2.6. Digital Betacam
3.2.7. Betacam SX
3.2.8. HDV
3.2.9. ProHD
3.2.10. D-VHS
3.2.11. MicroMV
3.2.12. Digital8
3.2.13. D1, D2, D3, D5, D6
3.2.14. S(X)VCD
3.3. Сравнение форматов записи
Глава 4. Методы сжатия
4.1. Технологии сжатия цифрового видео
4.2. Технологии и алгоритмы сжатия видео
4.3. MPEG (MPEG-1, MPEG-2, MPEG-3, MPEG-4)
4.4. MJPEG
4.5. Wavelet
4.6. JPEG
4.7. Apple QuickTime
4.8. Intel Indeo
4.9. CCIR 601
4.10. H.261
4.11. H.263
4.12. Ogg-Theora
4.13. AVI
4.14. Editable MPEG
4.15. VDOWave
4.16. Cinepak
4.17. Microsoft Video (MSVC)
Глава 5. Современные мобильные видеоформаты
5.1. 3GPP
5.2. Real Video
5.3. VICS Video
5.4. MobiClip Video
Глава 6. Программы, необходимые для воспроизведения видео
Глава 7. Современные видеокамеры
Глава 8. Носители цифрового видео
Глава 9. Системы спутникового телевидения
Глава 10. Телевидение высокой четкости (HDTV: High-Definition Television)
Глава 11. Справочная информация и термины
Список литературы
Введение
Ви́део (от лат. Video - дословно «вижу») - под этим термином понимают широкий спектр технологий записи, обработки, передачи, хранения и воспроизведения визуального и аудиовизуального материала. Когда в быту говорят «видео» - то обычно имеют в виду видеоматериал, телесигнал или кинофильм, записанный на физическом носителе (видеокассете, видеодиске и т. п.).
Обычные телевизионные видеоданные представляют собой поток аналоговых сигналов. Компьютерная обработка видеоинформации состоит в преобразовании их в цифровой формат с последующим хранением этих данных на жестком или компакт-диске или другом устройстве хранения информации. Оцифровка видеосигнала, как и оцифровка звука, включает две стадии: дискретизация данных аналогового видеопотока, т. е. снятие отсчетов с определенной частотой, и преобразование каждого такого отсчета в цифровой эквивалент или квантование.
При хранении оцифрованных данных в несжатом формате изображение размером 400x300 пикселов с глубиной цвета 24 бита на пиксел, обновляемое с частотой 25 Гц, потребует скорости передачи информации более 5,5 Мб/с. А хранение данных для показа 5-минутного ролика в указанном формате потребует информационное пространство, превышающее 1,6 Гб. Естественно, что при работе с такими данными невозможно обойтись без сжатия, однако и в этом случае потребуется время, определенные вычислительные мощности на распаковку данных. Достичь оптимального сжатия можно путем совершенствования аппаратных или программных средств, а может быть, совместно тех и других.
В качестве аппаратных средств используются специальные видеопроцессоры, которые поддерживают высокоскоростную компрессию и декомпрессию данных, не загружая центральный процессор компьютера. Второй подход состоит в использовании специализированных методов программного сжатия и распаковки предварительно сжатых видеоданных.
Аналоговый видеосигнал включает в себя несколько различных компонентов, объединенных в единое целое. Такой составной видеосигнал малопригоден для оцифровки. Предварительно его следует разделить на так называемые базовые компоненты. Обычно компоненты представляют собой три различных сигнала, соответствующие определенной модели представления цветового пространства. Если в статической графике используется RGB-цветовое представление, то в цифровом видео чаще используется модель YUV. Видеопоследовательности отображаются в виде серии кадров или фреймов, каждый из которых, no-существу, является графическим изображением и включает в себя определенное число пикселов. Такой видеофрейм может быть сжат с помощью одного из алгоритмов сжатия изображений, с потерями или без потерь.
Глава 1. Основные характеристики видео 1.1. Качество изображенияПод качеством изображения обычно понимается разрешение, то есть количество воспроизводимых вертикальных линий. Это оценка, по существу, поверхностная, так как существует много других, не менее важных, параметров, столь же заметных человеческому глазу, как и четкость по строке.
Качество видео измеряется с помощью формальных метрик, таких, как, например, PSNR, или с использованием субьективного сравнения с привлечением экспертов.
Метрика PSNR
В рамках тестирования критерием оценки качества может служит метрика PSNR (peak signal to noise ratio/пиковое отношение сигнала к шуму, измеряется в дБ). Данная метрика, по сути, аналогична среднеквадратичному отклонению, однако пользоваться ей несколько удобнее за счет логарифмического масштаба шкалы. Ей присущи те же недостатки, что и среднеквадратичному отклонению. Эта метрика очень популярна, ее используют во многих научных статьях и сравнениях в качестве меры потери качества. Как и все существующие метрики, она не идеальна и имеет свои достоинства и недостатки. Значение метрики тем больше, чем больше разница между сравниваемыми изображениями.
Смысл графиков PSNR/Frame size
На графике изображена зависимость показателя метрики от среднего размера кадра. Каждая ветвь соответствует определенному кодеку. Ветви построены на опорных точках, каждая из которых соответствует конкретному битрейту. Очевидно, на каждой ветви находится по десять точек (каждая последовательность сжимается на 10 настройках битрейта). Бывает, что кодек не удерживает битрейт и с разными настройками битрейта сжимает одинаково. В таких случаях на ветви кодека расположено менее десяти опорных точек. При сравнении кодеков на этих графиках следует обращать внимание на то, как высоко расположены ветви кодеков. Чем выше находится ветвь - тем выше качество последовательности, сжатой данным кодеком.
Существуют и другие метрики:
1. MSAD - Значением данной метрики является усреднённая абсолютная разность значений цветовых компонент в соответствующих точках сравниваемых изображений. Используется, например, для отладки кодеков или фильтров.
2. Delta - Значением данной метрики является усреднённая разность значений цветовых компонент в соответствующих точках сравниваемых изображений.
3. Bluring measure - Данная метрика позволяет сравнить степень размытия двух изображений, относительно друг друга. Чем ближе её значение к 0, тем больше размыто изображение.
4. Blocking measure - Метрика строилась так, чтобы ее значение было пропорционально визуальной степени "блочности". Например, в контрастных областях кадра границы блоков почти незаметны, а в однородных та же граница будет хорошо видна.
5. SSIM Index - Основывается на замере трёх компонент (сходности по яркости, по контрасту и структурного сходства) и объединения их значений в итоговый результат.
Субьективное качество видео измеряется по следующей методике:
1. Выбираются видеопоследовательности для использования в тесте;
2. Выбираются параметры системы измерения;
3. Выбирается метод показа видео и подсчета результатов измерения;
4. Приглашается необходимое число экспертов (обычно не меньше 15);
5. Проводится сам тест;
6. Подсчитывается средняя оценка на основе оценок экспертов.
Несколько методов субъективной оценки описаны в рекомендациях ITU-T BT.500. Один из широко используемых методов оценки - это DSIS (англ. Double Stimulus Impairment Scale), при котором экспертам сначала показывают исходный видеоматериал, а затем обработанный. Затем эксперты оценивают качество обработки, варьируя свои оценки от «обработка незаметна» и «обработка улучшает видеоизображение» до «обработанный видеоматериал сильно раздражает».
1.2. Эксплуатационные возможностиВ это понятие входит все, что касается работы устройства в системе, рабочие функции, удобство в эксплуатации, возможности интеграции, наличие интерфейсов и входов и выходов, те или иные особенности настроек и т.п.
1.3. Плотность записи, стоимость 1 минуты записи и массогабаритные параметры носителя (для видеолент)Это немаловажные параметры для формата видеозаписи. Они учитывают три фактора: размер и масса видеокассеты, длительности записи, удельную стоимость одной минуты записи. Чем больше вместимость кассеты, и/или меньше ее размер, и/или ниже удельная стоимость - тем выше оценка.
1.4. Затраты на приобретение и эксплуатацию техникиДанный параметр учитывает стоимость оборудования, технического обслуживания и запасных частей. Высокая оценка соответствует меньшим суммарным затратам на владение и обслуживания техники того или иного формата.
В каждом новом формате видеозаписи разработчики стремятся улучшить эти показатели, но улучшение одного показателя довольно часто происходит за счет ухудшения других. Однако следует признать, что суммарный уровень показателей всех категорий от формата к формату растет.
Количество (частота) кадров в секунду - это число неподвижных изображений, сменяющих друг друга при показе 1 секунды видеоматериала и создающих эффект движения объектов на экране. Чем больше частота кадров в секунду, тем более плавным и естественным будет казаться движение. Минимальный показатель, при котором движение будет восприниматься однородным - примерно 10 кадров в секунду (это значение индивидуально для каждого человека). В традиционном плёночном кинематографе используется частота 24 кадра в секунду. Системы телевидения PAL и SÉCAM используют 25 кадров в секунду (англ. 25 fps или 25 Герц), а система NTSC использует 29,97 кадров в секунду. Компьютерные оцифрованные видеоматериалы хорошего качества, как правило, используют частоту 30 кадров в секунду. Верхняя пороговая частота мелькания, воспринимаемая человеческим мозгом, в среднем составляет 39 - 42 Герца и индивидуальна для каждого человека. Некоторые современные профессиональные камеры могут снимать с частотой до 120 кадров в секунду. А специальные камеры для сверхбыстрой съёмки снимают с частотой до 1000 кадров в секунду, что необходимо, например, для детального изучения траектории полёта пули или структуры взрыва.
1.6. Чересстрочная развёрткаРазвёртка видеоматериала может быть прогрессивной или чересстрочной. При прогрессивной развёртке все горизонтальные линии (строки) изображения отображаются одновременно. А вот при чересстрочной развёртке показываются попеременно чётные и нечётные строки (называемые также полями кадра). Чересстрочную развёртку часто называют на английский манер интерлейс (англ. interlace) или интерлейсинг. Чересстрочная развёртка была изобретена для показа изображения на кинескопах с электронно-лучевой трубкой и используется сейчас для передачи видео по «узким» каналам, не позволяющим передавать изображение во всём качестве. Системы PAL, SECAM и NTSC - это всё системы с чересстрочной развёрткой. Новые цифровые стандарты телевидения, например, HDTV предусматривают прогрессивную развёртку. Хотя появились технологии, позволяющие имитировать прогрессивную развёртку при показе материала с интерлейсом. Чересстрочную развёртку обычно обозначают символом «i» после указания вертикального разрешения, например 720×576i×50 для видео в формате PAL.
1.7. РазрешениеПо аналогии с разрешением компьютерных мониторов, любой видеосигнал также имеет разрешение (англ. resolution), горизонтальное и вертикальное, измеряемое в пикселях. Обычное аналоговое телевизионное разрешение составляет 720×576 пикселей для стандартов PAL и SECAM, при частоте кадров 50 Герц (одно поле, 2×25); и 640×480 пикселей для NTSC, при частоте 60 Герц (одно поле, 2×29,97). В выражении 640×480 первым числом обозначается количество точек в горизонтальной линии (горизонтальное разрешение), а вторым числом количество самих линий (вертикальное разрешение). Новый стандарт высокочеткого (англ. high-definition) цифрового телевидения HDTV предполагает разрешения до 1920×1080 при частоте мелькания 60 Герц с прогрессивной развёрткой. То есть 1920 пикселей на линию, 1080 линий.
Разрешение в случае трёхмерного видео измеряется в вокселях - элементах изображения, представляющих точки (кубики) в трёхмерном пространстве. Например, для простого трёхмерного видео сейчас используется в основном разрешение 512×512×512.
Соотношение ширины и высоты кадра (англ. aspect ratio) - важнейший параметр в любом видеоматериале. Ещё с 1910 года кинофильмы имели соотношение сторон экрана 4:3 (4 единицы в ширину к 3 единицам в высоту; иногда ещё записывается как 1,33:1 или просто 1,33). Считалось, что зрителю удобнее смотреть фильм на экране такой формы. Когда появилось телевидение, то оно переняло это соотношение и почти все аналоговые телесистемы (и, следовательно, телевизоры) имели соотношение сторон экрана 4:3. Компьютерные мониторы также унаследовали телевизионный стандарт сторон. Хотя ещё в 1950-х годах это представление о 4:3 в корне изменилось. Дело в том, что поле зрения человека имеет соотношение отнюдь не 4:3. Ведь у человека 2 глаза, расположенных на одной горизонтальной линии - следовательно, поле зрения человека приближается к соотношению 2:1. Чтобы приблизить форму кадра к естественному полю зрения человека (и, следовательно, усилить восприятие фильма), был введён стандарт 16:9 (1,78), почти соответствующий так называемому «Золотому сечению». Цифровое телевидение в основном тоже ориентируется на соотношение 16:9. К концу XX века, после ряда дополнительных исследований в этой области, стали появляться даже и более радикальные соотношения сторон кадра: 1,85, 2,20 и вплоть до 2,35 (почти 21:9). Всё это, безусловно, призвано глубже погрузить зрителя в атмосферу просматриваемого видеоматериала.
1.9. Количество цветов и цветовое разрешениеКоличество цветов и цветовое разрешение видеосигнала описывается цветовыми моделями. Для стандарта PAL применяется цветовая модель YUV, для SECAM модель YDbDr, для NTSC модель YIQ, в компьютерной технике применяется в основном RGB (и αRGB), реже HSV, а в печатной технике CMYK. Количество цветов, которое может отобразить монитор или проектор зависит от качества монитора или проектора. Человеческий глаз может воспринять, по разным подсчётам, от 5 до 10 миллионов оттенков цветов. Количество цветов в видеоматериале определяется числом бит, отведённым для кодирования цвета каждого пикселя (англ. bits per pixel, bpp). 1 бит позволяет закодировать 2 цвета (обычно чёрный и белый), 2 бита - 4 цвета, 3 бита - 8 цветов, …, 8 бит -256 цветов (28 = 256), 16 бит - 65 536 цветов (216), 24 бита - 16 777 216 цветов (224). В компьютерной технике имеется стандарт и 32 бита на пиксель (αRGB), но этот дополнительный α-байт (8 бит) используется для кодирования коэффициента прозрачности пикселя (α), а не для передачи цвета (RGB). При обработке пикселя видеоадаптером, RGB-значение будет изменено в зависимости от значения α-байта и цвета подлежащего пикселя (который станет «виден» через «прозрачный» пиксель), а затем α-байт будет отброшен, и на монитор пойдёт только цветовой сигнал RGB.
1.10. Ширина видеопотока (для цифрового видео)Ширина (иначе говорят скорость) видеопотока или битре́йт (англ. bit rate) - это количество обрабатываемых бит видеоинформации за секунду времени (обозначается «бит/с» - бит в секунду, или чаще «Мбит/с» - мегабит в секунду; в английском обозначении «bit/s» и «Mbit/s» соответственно). Чем выше ширина видеопотока, тем в общем лучше качество видео. Например, для формата VideoCD ширина видеопотока составляет всего примерно 1 Мбит/с, а для DVD составляет около 5 Мбит/с. Конечно, субъективно разницу в качестве нельзя оценить как пятикратную, но объективно это так. Формат же цифрового телевидения HDTV использует ширину видеопотока около 10 Мбит/с. При помощи скорости видеопотока также очень удобно оценивать качество видео при его передаче через Интернет.
Различают два вида управления шириной потока в видеокодеке - постоянный битрейт (англ. constant bit rate, CBR) и переменный битрейт (англ. variable bit rate, VBR). Концепция VBR, ныне очень популярная, призвана максимально сохранить качество видео, уменьшая при этом суммарный объём передаваемого видеопотока. При этом на быстрых сценах движения, ширина видеопотока возрастает, а на медленных сценах, где картинка меняется медленно, ширина потока падает. Это очень удобно для буферизованных видеотрансляций и передачи сохранённого видеоматериала по компьютерным сетям. Но для безбуферных систем реального времени и для прямого эфира (например, для телеконференций) это не подходит - в этих случаях необходимо использовать постоянную скорость видеопотока.
Глава 2. ВидеостандартыКогда говорят о формате файла, подразумевается то, каким образом информация, которая содержится в файле, кодируется в цифровом виде. Для хранения видеоинформации в ПК разработано довольно много форматов, отличающихся способом представления данных, степенью их сжатия и т. п. Чтение и запись аудио- и видеоинформации на компьютере осуществляется с помощью специальных вспомогательных программ - «кодеков» (сокращение от слов «кодирование/декодирование»). Такие программы обычно входят в состав операционной системы либо поставляются с проигрывающими устройствами.
2.1. Цифровые... 1 Общая характеристика программно-аппаратного комплекса записи видео MIRO VIDEO DC30. Плата MIRO VIDEO DC30 при цене менее чем в 1,500 долларов эта система позволяет уже вполне профессионально работать с видео даже в студийных условиях. Благодаря использованию режима PCI Bus Master достигается пропускная способность до 6 Мбайт/с, что позволяет работать с коэффициентом сжатия 3,5:1 для полного ...
... съемкой и т.д. Во-вторых, съемка не требует никакого программного обеспечения, а аппаратных вопросов, и тем более творческих, я в рамках статьи даже начинать не собираюсь. 1.3. Программы обработки видео Начнем с конца, поговорим о плеерах. В систему Windows уже встроен мощный проигрыватель, но требовательные пользователи предпочитают использовать другие, которые либо имеют больше настроек, ...
... курсовой работы достигнуты такие результаты: 1. Разработана информационная система «Архив online видео». 2. Получены практические навыки в создании Web‑сайтов средствами скриптового языка PHP. 3. Получены практические навыки самостоятельной постановки и решения задачи разработки архива flv файлов. 4. Усвоены методики формализации данного типа задач. ...
... компаний начал разработку нового телевизионного стандарта HDTV, а сегодня уже несколько телевизионных станций в Нью-Йорке вещают в этом современном формате. Рассмотрим, что это такое. Итак, аббревиатура HDTV означает High Definition Television, то есть, в переводе на русский, телевидение высокой четкости. Тот, кто хотя бы один раз увидит отрывок какой-либо телепрограммы в формате HDTV, сразу ...
0 комментариев