2.4 Полупроводниковые пленки

В тех случаях, когда требуется обеспечить высокое значение поверхностного сопротивления и допустимы относительно высокие величины ТКС, в качестве материала для резистивных пленок могут быть использованы полупроводники. В течение ряда лет изучались германий и кремний, для определения возможности их применения в качестве материалов для тонкопленочных резисторов. Однако самые лучшие результаты в этом вопросе были достигнуты с углеродом и окисью олова.

1) Углеродные пленки. Углеродные пленки в интегральных схемах не нашли широкого применения из-за трудностей управления поверхностным сопротивлением и высоких температур технологического процесса. Тем не менее они были применены при изготовлении дискретных резисторов. Последний обзор их технологии и свойств появился в 1960 г.. Углеродные резистивные пленки обычно осаждаются на керамические подложки, необходимые из-за высоких температур (порядка 1000° С), используемых в процессе осаждения, например, при пиролизе углеродсодержащего газа, как например, метана. Обычно газообразные углеводороды для лучшего управления технологическим процессом разбавляются нейтральными газами, например, азотом. Изменения температуры, концентрации газа и т. д. обеспечивают возможность получения пленок различной толщины. Таким образом получаются так называемые «углеродно-осажденные» резисторы. В связи с тем, что в настоящее время точное управление получением требуемого поверхностного сопротивления пиролитическим методом невозможно, резисторы индивидуально подгоняют до требуемого номинала нарезкой спиральных канавок на поверхности пленки, см. разд. 4В. ТКС чистых углеродных пленок относительно высок и меняется от -2,5*10-4 1/°С при 10 Ом/□ до –4*10-4 1/°С при 1000 Ом/□. Для учета небольших изменений сопротивления, связанных с присоединением контактных выводов, резисторы специально подгоняются до величины на 1% меньшей номинала, а окончательная подгонка осуществляется тонкой обработкой абразивом пленки перед нанесением защитного покрытия.

Гораздо более твердые и более стабильные пленки (сплавные пленки) можно получить, используя другие элементы, такие, например, как кремний и кислород с углеродом. По сравнению с обычными пленками, которые должны быть тщательно защищены, «сплавные» пленки нечувствительны к окислению даже без защитных покрытий. Однако ТКС у них не меньше, чем у обычных углеродных пленок.

Резкое уменьшение ТКС углеродных пленок может быть обеспечено использованием вместе с метаном боросодержащего газа. Пленки этого типа имеют ТКС — 0,2. 10-4 1/°С при 10 Ом/□ (при 4% бора и -2,5* 10-4 1/°С при 1000 Ом/□. Для получения пленок, легированных бором, использовались также смеси гидрида бора с метаном и бензином, а также однокомпонентные системы типа трипропилборана Однако наиболее распространенной присадкой является ВСl3.

2) Пленки окиси олова. Обсуждавшиеся ранее системы для создания резисторов в различной степени подвержены влиянию окисления. Можно ожидать, что материал, определенным образом окисленный на воздухе, будет свободен от этого недостатка. Окись оловя и является как раз таким материалом. Кроме того, благодаря тугоплавкости, вероятность отжига или агломерации окиси олова низка. Наиболее распространенным методом получения пленок окиси олова является гидролиз хлорида олова (SnCl4) на поверхности подложки.


Рисунок 12 - Зависимость поверхностого сопротивления пленок окиси олова от концентрации сурьмы при различных толщинах пленки

Так как чистый хлорид олова гидролизуется слишком быстро, то для замедления реакции обычно добавляется спирт, например, этиловый, органическая кислота, например, уксусная, или, часто, HCI. Типичная процедура заключается в нанесении раствора, содержащего равные объемные части различных составляющих, методом пульверизации на нагретую стеклянную или керамическую подложку, на поверхности которой происходит реакция. Скорость реакции при 500° С низкая, а около 800° С резко возрастает. Вследствие крайне высокой температуры окись олова образует пленку, обладающую высокой адгезией. Для устройств, в которых используется нанесение раствора на вращающиеся подложки струей, требуется тщательный контроль процесса.

Рисунок 13 - Зависимость ТКС пленок окиси олова от поверхностного сопротивления при различных концентрациях сурьмы.


Окись олова — полупроводник с широкой запрещенной зоной, — при тщательном обеспечении стехиометрии имеет высокое удельное сопротивление. Однако пленки, полученные гидролизом, могут или быть недоокисленными, или содержать некоторое количество ионов хлора. В этих случаях пленки имеют электронную проводимость. Для дальнейшей модификации проводимости пленок окиси олова обычно применяют добавки соответствующих легирующих примесей, сурьмы и индия. Сурьма, например, действует как донор, еще более увеличивая проводимость и уменьшая температурный коэффициент сопротивления, с другой стороны, индий действует как акцептор и компенсирует кислородные вакансии, обусловливая рост удельного сопротивления и ТКС. Пленки Su02 могут иметь высокое удельное сопротивление. Так, пленки с поверхностным сопротивлением 10000 Ом/□ могут иметь толщину 1 мкм. Эти пленки очень шероховатые и могут без ухудшения характеристик работать в окислительной атмосфере при температурах до 450°С. Такая высокая температурная стабильность уменьшает опасность ухудшения параметров резисторов за счет реиспарения в разогретых точках. В частности, пленки, легированные сурьмой, наиболее стабильны в окислительной атмосфере, в то время как у нелегированных пленок проводимость может изменяться за счет заполнения части кислородных вакансий. Зависимость поверхностного сопротивления при данной толщине от концентрации сурьмы в пленке приведена на рис. 12, а на рис. 13 приведена зависимость ТКС от поверхностного сопротивления для различных концентраций сурьмы.

Интересной особенностью пленок окиси олова является их высокая прозрачность. Вследствие этого они нашли широкое применение в производствах «проводящего стекла» и нагревательных элементов. Однако методика создания, использование высоких температур и то, что пленки, полученные путем гидролиза на поверхности, очень крупнозернистые и грубые, ограничивает применение пленок указанного типа в интегральных схемах Гладкие пленки, осажденные при более низких температурах, могли бы найти большее применение, однако проведенное напыление и катодное распыление окисных пленок показало, что для достижения полезных свойств после осаждения необходима термообработка при температурах порядка 800°С.



Информация о работе «Тонкопленочные резисторы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 50895
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
41605
1
1

... диэлектрик — металл. Пленки тантала и его соединений Пленки тантала и его соединений в последние годы получают все более широкое распространение при изготовлении тоикопленочных элементов интегральных схем. Выбор тантала в качестве исходного материала во многом объясняется тем, что в зависимости от условий получения талталовых пленок они могут иметь различную структуру и соответственно в ...

Скачать
14538
1
3

... 4 ГГ ц и имеют пластинчатую форму длиной от 4 до 20 мм, шириной от 3-до 6 мм, толщиной 1 мм, либо цилиндрическую диаметром от 1,5 до 4 мм и длиной от 12 до 24 мм. Высокомегаомные и высоковольтные резисторы. Резисторы специального назначения Высоко мегаомные резисторы, отличительной особенностью которых является низкий уровень номинальной мощности рассеивания (порядка десятков милливатт и ...

Скачать
29358
0
0

... . Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники. Отклонения от заданной кривой определяются допусками. Для резисторов общего применения ...

Скачать
26532
10
0

результаты: - произвели электрический расчет схемы с помощью программы электрического моделирования “VITUS”, в результате которого мы получили необходимые данные для расчета геометрических размеров элементов; - произвели расчет геометрических размеров элементов и получили их размеры, необходимые для выбора топологии микросхемы; - произвели выбор подложки для микросхемы и расположили на ней ...

0 комментариев


Наверх