5. Расчет дифференциального каскада.

دîëîوèى, Iف m نèôô= Iت m VT5,6> (5¸)×Б mVT3= 15 мА,

IК0 VT5,6 = IК m VT5,6 + 0,05×IК m VT5,VT6 = 16 мА;

R13 = IБЭ VT3/ I К0 VT5,6 = 0,7/0,016 » 50 Ом

Расчитаем транзисторы для данного каскада.

 Р m расс = IК0×UК0 = 0,016×11 = 0.176 Вт. Теперь мы

можем подобрать транзисторы VT5 и VT6 так, чтобы

PKmax > P m расс = 0,176 Вт,

IKmax > IК m VT5,6 + IК0 VT5,6 = 0,015 + 0,016 = 31 мА,

UКЭ0max > Eп = 22 В,

 а fгр/h21Э > 5×fвч = 400 кГц :

VT5, VT6
марка транзистора КТ107Б
тип транзистора  p-n-p

IKmax – постоянный ток коллектора, мА

100

UKЭ0max– постоянное напряжение кол.-эм. (Iб=0), В

45

PKmax– постоянная рассеиваемая мощность коллектора, Вт

0,3

статич. коэф-т передачи тока в схеме с ОЭ h21, минимальное значение

120

fгр граничная частота коэффициента передачи тока в схеме с ОЭ, МГц

200

Определим ток эмиттера транзисторов IБ = IК/h21Э , то есть IЭ = (h21 +

 + 1)×IБ = (h21 + 1)×IК/ h21 » IК0 VT5,6 = 16 мА. Постоянная составляющая

 IЭ VT5 = IК VT5 = 5×IБ VT3 = 5×0,0015 = 7,5 мА, при этом выходной ток ГСТ1

 IК ГСТ1 = 2×IЭ VT5,6 = 2×0,0075 = 15 мА, мощность, рассеиваемая на VT7

 Ррасс m = IK0×UK0 = 0.015×11=0.165 Вт.

 Исходя из полученных данных, выбираем VT7 так,

 что PKmax > 2×Pm расс VT5,6 = 0,352 Вт,

IKmax > 2×IК0 VT7 = 32 мА,

UКЭ0max > Eп = 11 В:

VT7
марка транзистора П504
тип транзистора  p-n-p

IKmax – постоянный ток коллектора, мА

500

UKЭ0max– постоянное напряжение кол.-эм. (Iб=0), В

45

PKmax– постоянная рассеиваемая мощность коллектора, Вт

0,4

статич. коэф-т передачи тока в схеме с ОЭ h21, минимальное значение

10

fгр граничная частота коэффициента передачи тока в схеме с ОЭ, МГц

10

Определим значения резисторов R10, R×11, R14. Дабы повысить

 сопротивление ГСТ1, падение напряжения на R14 полагаем

 UR14 = 0,8 В;

 IЭ VT7 = IБ VT7 + IК VT7; IБ VT7 = IК VT7/h21Э, то есть IЭ VT7 = IК VT7 » 0,015 А;

 R14 = UR5/IЭ VT7 = 0,5/0,016 = 31,25 Ом, полагаем 35 Ом.

 IБ VT7 = 0,015/10 = 1,5 мА; Iдел ГСТ1 = 10×IБ VT7 = 15 мА;

 R10 = (UR14 +UБЭ VT7)/Iдел = (0,8 + 35×0,015)/0,015 » 88,3 Ом,

 выбираем R10 = 100 Ом;

 R11 = (Еп – UR10)/Iдел = (11 - 100×0,015)/0,015 » 633 Ом,

 выбираем R11 = 650 Ом.

 Проверим Rвых ГСТ1 = (RБ + h11Э + (h21Э + 1)×RЭ/ h22Э×(RБ + h11Э + RЭ), где RБ = R10×R11/(R10 + R11) = 87 Ом; h11Э = rБ + (h21Э +1)×rЭ = 100 + (10 + 1)× ×0,026/0,015 = 120 Ом, h22Э = 10-4, тогда Rвых ГСТ1 = 104×(87 + 120 + 81× ×35)/(87 + 120 + 35) = 126 кОм, что нам и было нужно.

 Найдем R12. Для согласования каскадов возьмем R12 >> rвх VT5 ;

 r вх VT5 = rБ VT5 + rЭ VT5×h21Э VT5 = rБ VT5 + (0,026/IЭ VT5)×h21Э VT5 = 100 +

 + (0,026/0,015)×81 = 240 Ом. Положим R12 = 10 кОм

6. Расчет диодов организующих смещение транзисторов ЭП

Диоды, позволяющие работать эмиттерному повторителю в режиме класса В, можно выбрать по единственному параметру – протекающему току:

IД = 35 мА, выбираем УД413В

 7. Расчет системы отрицательной обратной связи

 Необходимый коэфф-т усиления выходного каскада КU = Uвых/Uвх =

 = 9/2 = 4,5. Но нам известно, что если общий коэффициент усиления много больше требуемого, то коэффициент усиления равен глубине обратной связи: КU = K/(1 + b×K) » 1/b = 4.5, то есть b = 0,22, где b - коэффициент передачи обратной связи. Определим КU дифференциального каскада:

 КU дифф = Uвых/Uвх = IK×RKN/(IБ×rвх) = b×RKN/(rБ + rЭ×(1+b)) » RKN/rЭ ,

 RKN= R13×rвх каск ОЭ/(R13 + rвх каск ОЭ),

rвх каск ОЭ = rБ каск ОЭ + (h21Э VT3 + 1)×rЭ каск ОЭ = 100 + 0,026×30/0,03 = 126 Ом, RКН = 50×126/(50+126) = 35,8 Ом,

rЭ VT5,6 = 0,026/0,016 = 1,6 Ом

KU дифф = 35,8/1,6 = 22,4

 КU = KU дифф×КU ОЭ = 22,4×88 = 1971 >> 4.5, видно, что общий коэффициент усиления много больше требуемого. Тогда для резисторов R17 и R16 получаем систему b = R16/(R17 + R16), R16 <rвх ДифКаск , R16 + R17 >>Rн . Выбрав R16 =65 Ом, получим R17 = R16/b - R16 = 65/0,22 – 65 =230 Ом. Данные значения сопротивлений удовлетворяют всем условиям.


Информация о работе «Универсальный генератор»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 15303
Количество таблиц: 6
Количество изображений: 1

Похожие работы

Скачать
15467
0
7

... периода. При этом на вход частотомера подают частоты соответствующие верхней и низшей частоте диапазона, установленного для частотомера в режиме измерения периода.   Поверка универсальных электронно-лучевых осциллографов   Нормируемые параметры и метрологические характеристики К метрологическим характеристикам осциллографов, связанным с параметрами исследуемых сигналов, относятся: 1) ...

Скачать
13566
1
0

... форме сигнала, которые последовательно считываются и передаются на ЦАП, формирующий аналоговый сигнал. Создание структурной схемы генератора Составим структурную схему для цифрового генератора синусоидальных колебаний на основе памяти. (Рис. 6) Рис. 6 ГТИ - обеспечивает формирование управляющих импульсов заданний частоты, обеспечивающей требуемую частоту синуса на ...

Скачать
65112
10
7

... . /9/ 2.2 Виды и объемы работ по техническому обслуживанию 2.2.1 Анализ надежности Универсальный регулятор уровня воды состоит из следующих основных узлов: датчики уровня с схемой управления (1), элемент «И», усилитель и электронный ключ (2), генератора прямоугольных импульсов (3), блока питания (4). Проведем анализ надежности по группам элементов, с целью выявления самых ненадёжных ...

Скачать
12980
0
7

... систему, совершающую колебания). Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменятся со временем по закону синуса (косинуса). Генератором гармонических колебаний называют устройство, создающее переменное синусоидальное напряжение при отсутствии входных сигналов. В схемах генераторов всегда используется положительная обратная связь. ...

0 комментариев


Наверх