2.1.2. Выбор цепи термостабилизации.
На приведенной схеме (см. рис2.1) эта цепь была условно обозначена . Она предназначена для создания начального смещения на базах транзисторов выходного каскада. В процессе нагрева их параметры существенно изменяются, что влечет за собой изменение режимов и нарушение работы всей схемы. Цепь в зависимости от температурного режима изменяет напряжение смещения так, чтобы компенсировать изменение параметров транзисторов.
Схема на диоде.
Диод при этом обязательно должен иметь надежный контакт с радиатором, на котором установлены выходные транзисторы, иначе термостабилизации попросту не будет.
Диодов может быть несколько, при этом они включаются последовательно.
Данная схема обеспечивает достаточную температурную стабильность в диапазоне температур 0 .. 40 .
2.1.3. Расчет оконечного каскада.
1.Определяем амплитуду напряжения и тока на нагрузке:
2.Определяем напряжение источника питания:
где =1..3 В –остаточное напряжение на полностью открытом транзисторе выходного каскада при P=1..10 Вт, но всегда >0,4..0,7 В. должно иметь запас 10..15% тоесть:
выбираем из стандартного ряда
При данных условиях можно реализовать усилитель по бестрансформаторной схеме, так как максимальная мощность обычного двухтактного каскада больше мощности указанной в техническом задании.
3.Определяем максимальную мощность, рассеиваемую на коллекторах выходных транзисторов:
4.Определяем желаемый коэффициент усиления по току для выходных транзисторов:
где =16мВт – выходная мощность предоконечного каскада, работающего в режиме А:
5.Выбираем транзисторы оконечного каскада (VT3,VT4) по следующим параметрам:
По ранее рассчитанным параметрам выбираем транзисторы VT3 и VT4:
VT3: КТ 829А (n-p-n)
VT4: КТ 853А (p-n-p)
6. Необходимо проверить, смогут ли выходные транзисторы нормально работать без дополнительного теплоотвода. Максимально допустимая мощность рассеивания на коллекторе при заданной температуре окружающей среды
и отсутствии радиатора определяется выражением:
где соответственно max рабочая температура перехода коллектор-база, тепловое сопротивление промежутка переход-среда.
Согласно условиям эксплуатации данные транзисторы должны работать с дополнительными теплоотводами, т.е. с радиаторами. Тепловое сопротивление радиатора и площадь его поверхности определяется с помощью следующих выражений:
7. Определяем постоянный ток и мощность, потребляемые от источника питания, и коэффициент полезного действия:
8. Дополнительный расчет оконечного каскада:
9. Результаты расчета оконечного каскада
Тип
VT3 n-p-n 60 8 100 750 ---- 7
VT4 p-n-p 60 8 100 750 ---- 7
Примечание: * с применением радиатора.
2.1.4. Расчет предоконечного каскада.
Определим напряжение смещения оконечного каскада (напряжениями на резисторах R9 R10 как правило можно пренебречь):
Перейдем непосредственно к расчету .
1. Задаемся током покоя:
2. Выбираем R8:
Из ряда Е12 R8=160(Ом)
3. Рассчитываем R7
Из ряда Е12 R7=560(Ом)
4. Выбираем VT2 по следующим параметрам:
Выбираем транзистор VT2: KT644Б
5. Расчет цепи смещения:
а) выбираем диод по критериям:
Выбираю диод D223.
В этой схеме хорошо работает стабилитрон.
Б) определяем количество диодов:
в) определяем сопротивление подстроечного резистора:
Коэффициент 2 указывает на то, что в номинальном режиме движок резистора будет примерно в среднем положении.
6. Определяем входное сопротивление ПОК. Оно практически определяется входным сопротивлением транзистора.
7. Определим коэффициент усиления каскада по напряжению:
8. Результаты расчета предоконечного каскада:
Тип
KT644Б n-p-n 0.28 0.0263 32.4 100 300 0.036
2.1.5. Расчет входного каскада
Исходные данные:
Рассмотрим входной каскад усилителя мощности
1. Задаем постоянный ток коллектора VT1
Зададим ток коллектора
2. Выбираем VT1 по критериям :
Транзистор VT1: КТ315Б
3. Рассчитываем R4:
Из ряда Е12
4. Расчет цепи обратной связи.
Коэффициент в данном случае можно округлить, как коэффициент передачи напряжения от точки “С” к переходу б’э транзистора VT1:
где
Сопротивление представляет собой нижнее плечо делителя в цепи обратной связи, состоящее из параллельного соединения сопротивления и выходного сопротивления транзистора VT1 со стороны эммитера :
,где
Определим ток базового делителя:
Выберем ток
Задаем падение напряжения на :
Задаем значение :
Из ряда Е12
Определим постоянный потенциал базы VT1:
Для нормальной работы необходимо, чтобы Проверяем
Определяем :
Из ряда Е12
Определяем :
Из ряда Е12
Коэффициенты усиления предоконечного и выходного каскадов:
где - внутренняя крутизна транзистора.
Найдём
Из ряда Е12
Коэффициент петлевого усиления равен:
где - коэффициент усиления оконечного каскада (VT3 и VT4),
- предоконечного каскада (VT2),
- входного каскада (VT1)
5. Найдем входное сопротивление каскада на VT1:
6. Рассчитаем величины емкостей ,, и , по формуле:
где - затухание ( в разах)
Рассчитаем ; для него
Из ряда Е24
Рассчитаем:
Для C3 и С4 расчет можно упростить. Емкости С3 и С4 находятся в петле обратной связи. Искажения вносимые этими емкостями будут уменьшены в глубину обратной связи (в F раз), поэтому их величины могут быть рассчитаны, исходя из следующих соображений. Сопротивления этих емкостей на нижней частоте диапазона должны быть заметно меньше, чем R5 и R8 соответственно:
Из ряда Е24
Рассчитаем:
Из ряда Е24
Рассчитаем для него и положим искажения вносимые этой емкостью М=1дБ
Из ряда Е24
7. Определим коэффициент усиления по напряжению рассчитанного усилителя мощности:
8. Определим требуемое входное напряжение при номинальной выходной мощности:
Определим
Определим :
Из ряда Е12
Определим : для устранения возможности самовозбуждения на высоких частотах частотную характеристику коэффициента петлевого усиления ограничивают за счет включения конденсатора , определяемого по выражению:
Из ряда E24
Результаты расчетов занесём в таблицу:
VT1 тип
КТ315Б n-p-n 50-350 0.1 0.15 20 250
Примечание: полученные номиналы элементов соответствуют схемам приведенным на рис 2.2 и рис 2.3.
... и стремительно развивается за счет научно-технических разработок. 1.Факторы, формирующие потребительские свойства и качество РЭА. 1.1 Потребительские свойства радиоэлектронной аппаратуры. а) Функциональные: Общие: 1)Верность воспроизведения звука(характеризует качество звучания и определяется степенью соответствующего звука ,воспроизводимого акустической системой натуральному ...
... , Тайваня, США. Телефон-трубка собрана на семи транзисторах. Питание схемы снимается с диодного моста VD4 — VD7 через герконовый (или другого типа) переключатель SA1. На транзисторах VT1, VT2, VT3 собраны дифференциальная схема и электронный ключ для набора номера. Питание разговорной части схемы снимается с делителя R5, R8 и зависит от номинала резистора R8, (150 — 200 Ом). На транзисторе VT4 ...
... этому представлен данный дипломный проект, который является первым в своем роде в г. Астрахани. В данном дипломном проекте рассматривается проблема построения локальной корпоративной сети звукового обеспечения интеллектуального здания на основе технологии Fast Ethernet для Областного центра детского и юношеского творчества г. Астрахани. Целью дипломного проекта является организация локальной ...
... выходят из строя. Более детальное рассмотрение вопросов защиты от НСВ по коммуникационным каналам приведено в следующем подразделе. Защита по виброакустическому каналу утечки информации Метод съема информации по виброакустическому каналу относится к так называемым беззаходовым методам, и это является важным его преимуществом. Обнаружить аппаратуру такого съема информации крайне трудно, так как ...
0 комментариев