2.1.2. Выбор цепи термостабилизации.

На приведенной схеме (см. рис2.1) эта цепь была условно обозначена . Она предназначена для создания начального смещения на базах транзисторов выходного каскада. В процессе нагрева их параметры существенно изменяются, что влечет за собой изменение режимов и нарушение работы всей схемы. Цепь  в зависимости от температурного режима изменяет напряжение смещения так, чтобы компенсировать изменение параметров транзисторов.

Схема на диоде.

Диод при этом обязательно должен иметь надежный контакт с радиатором, на котором установлены выходные транзисторы, иначе термостабилизации попросту не будет.

Диодов может быть несколько, при этом они включаются последовательно.

Данная схема обеспечивает достаточную температурную стабильность в диапазоне температур 0 .. 40 .

2.1.3. Расчет оконечного каскада.

1.Определяем амплитуду напряжения и тока на нагрузке:

2.Определяем напряжение источника питания:

где =1..3 В –остаточное напряжение на полностью открытом транзисторе выходного каскада при P=1..10 Вт, но всегда >0,4..0,7 В.  должно иметь запас 10..15% тоесть:

 выбираем из стандартного ряда

При данных условиях можно реализовать усилитель по бестрансформаторной схеме, так как максимальная мощность обычного двухтактного каскада больше мощности указанной в техническом задании.

3.Определяем максимальную мощность, рассеиваемую на коллекторах выходных транзисторов:

4.Определяем желаемый коэффициент усиления по току  для выходных транзисторов:

где =16мВт – выходная мощность предоконечного каскада, работающего в режиме А:

5.Выбираем транзисторы оконечного каскада (VT3,VT4) по следующим параметрам:

По ранее рассчитанным параметрам выбираем транзисторы VT3 и VT4:

VT3: КТ 829А (n-p-n)

VT4: КТ 853А (p-n-p)

 6. Необходимо проверить, смогут ли выходные транзисторы нормально работать без дополнительного теплоотвода. Максимально допустимая мощность рассеивания на коллекторе при заданной температуре окружающей среды

 и отсутствии радиатора определяется выражением:

где  соответственно max рабочая температура перехода коллектор-база, тепловое сопротивление промежутка переход-среда.

Согласно условиям эксплуатации данные транзисторы должны работать с дополнительными теплоотводами, т.е. с радиаторами. Тепловое сопротивление радиатора и площадь его поверхности определяется с помощью следующих выражений:

 

7. Определяем постоянный ток и мощность, потребляемые от источника питания, и коэффициент полезного действия:

8. Дополнительный расчет оконечного каскада:



9. Результаты расчета оконечного каскада

Тип   

VT3 n-p-n 60 8 100 750 ---- 7

VT4 p-n-p 60 8 100 750 ---- 7

Примечание: * с применением радиатора.

2.1.4. Расчет предоконечного каскада.

Определим напряжение смещения оконечного каскада (напряжениями на резисторах R9 R10 как правило можно пренебречь):

Перейдем непосредственно к расчету .

1.  Задаемся током покоя:

2.  Выбираем R8:

Из ряда Е12 R8=160(Ом)

3.  Рассчитываем R7

Из ряда Е12 R7=560(Ом)

4.  Выбираем VT2 по следующим параметрам:

Выбираем транзистор VT2: KT644Б

5.  Расчет цепи смещения:

а) выбираем диод по критериям:

Выбираю диод D223.

В этой схеме хорошо работает стабилитрон.

Б) определяем количество диодов:

в) определяем сопротивление подстроечного резистора:

Коэффициент 2 указывает на то, что в номинальном режиме движок резистора будет примерно в среднем положении.

6.  Определяем входное сопротивление ПОК. Оно практически определяется входным сопротивлением транзистора.

7.  Определим коэффициент усиления каскада по напряжению:

8.  Результаты расчета предоконечного каскада:


Тип   

KT644Б n-p-n 0.28 0.0263 32.4 100 300 0.036


2.1.5. Расчет входного каскада

Исходные данные:

Рассмотрим входной каскад усилителя мощности

1.  Задаем постоянный ток коллектора VT1

Зададим ток коллектора

2.  Выбираем VT1 по критериям :

Транзистор VT1: КТ315Б

3.  Рассчитываем R4:

Из ряда Е12

4.  Расчет цепи обратной связи.

Коэффициент  в данном случае можно округлить, как коэффициент передачи напряжения от точки “С” к переходу б’э транзистора VT1:

где

Сопротивление  представляет собой нижнее плечо делителя в цепи обратной связи, состоящее из параллельного соединения сопротивления  и выходного сопротивления транзистора VT1 со стороны эммитера :

 ,где

Определим ток базового делителя:

Выберем ток

Задаем падение напряжения на :

Задаем значение :

Из ряда Е12

Определим постоянный потенциал базы VT1:

Для нормальной работы необходимо, чтобы  Проверяем

Определяем :

Из ряда Е12

Определяем :

Из ряда Е12

Коэффициенты усиления предоконечного и выходного каскадов:

где - внутренняя крутизна транзистора.

Найдём

Из ряда Е12

Коэффициент петлевого усиления  равен:

где - коэффициент усиления оконечного каскада (VT3 и VT4),

 - предоконечного каскада (VT2),

 - входного каскада (VT1)

5.  Найдем входное сопротивление каскада на VT1:

6.  Рассчитаем величины емкостей ,, и , по формуле:

где - затухание ( в разах)

Рассчитаем ; для него

Из ряда Е24

Рассчитаем:

Для C3 и С4 расчет можно упростить. Емкости С3 и С4 находятся в петле обратной связи. Искажения вносимые этими емкостями будут уменьшены в глубину обратной связи (в F раз), поэтому их величины могут быть рассчитаны, исходя из следующих соображений. Сопротивления этих емкостей на нижней частоте диапазона должны быть заметно меньше, чем R5 и R8 соответственно:

Из ряда Е24

Рассчитаем:

Из ряда Е24

Рассчитаем для него  и положим искажения вносимые этой емкостью М=1дБ

Из ряда Е24

7.  Определим коэффициент усиления по напряжению рассчитанного усилителя мощности:

8.  Определим требуемое входное напряжение при номинальной выходной мощности:

Определим

Определим :

Из ряда Е12

Определим : для устранения возможности самовозбуждения на высоких частотах частотную характеристику коэффициента петлевого усиления ограничивают за счет включения конденсатора , определяемого по выражению:

Из ряда E24

Результаты расчетов занесём в таблицу:

VT1 тип    

КТ315Б n-p-n 50-350 0.1 0.15 20 250


Примечание: полученные номиналы элементов соответствуют схемам приведенным на рис 2.2 и рис 2.3.


Информация о работе «Усилитель звуковой частоты для стационарной аппаратуры 2-й степени сложности»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 19533
Количество таблиц: 4
Количество изображений: 9

Похожие работы

Скачать
57219
3
2

... и стремительно развивается за счет научно-технических разработок. 1.Факторы, формирующие потребительские свойства и качество РЭА.   1.1 Потребительские свойства радиоэлектронной аппаратуры. а) Функциональные: Общие: 1)Верность воспроизведения звука(характеризует качество звучания и определяется степенью соответствующего звука ,воспроизводимого акустической системой натуральному ...

Скачать
143686
5
84

... , Тайваня, США. Телефон-трубка собрана на семи транзисторах. Питание схемы снимается с диодного моста VD4 — VD7 через герконовый (или другого типа) переключатель SA1. На транзисторах VT1, VT2, VT3 собраны дифференциальная схема и электронный ключ для набора номера. Питание разговорной части схемы снимается с делителя R5, R8 и зависит от номинала резистора R8, (150 — 200 Ом). На транзисторе VT4 ...

Скачать
227829
16
5

... этому представлен данный дипломный проект, который является первым в своем роде в г. Астрахани. В данном дипломном проекте рассматривается проблема построения локальной корпоративной сети звукового обеспечения интеллектуального здания на основе технологии Fast Ethernet для Областного центра детского и юношеского творчества г. Астрахани. Целью дипломного проекта является организация локальной ...

Скачать
158049
14
7

... выходят из строя. Более детальное рассмотрение вопросов защиты от НСВ по коммуникационным каналам приведено в следующем подразделе. Защита по виброакустическому каналу утечки информации Метод съема информации по виброакустическому каналу относится к так называемым беззаходовым методам, и это является важным его преимуществом. Обнаружить аппаратуру такого съема информации крайне трудно, так как ...

0 комментариев


Наверх