1.4 Органічні електролюмінісцентні випромінювачі
Останніми роками інтенсивно ведуться роботи, зв'язані із застосуванням гнучких органічних електролюмінісцентних елементів (ЕЛЕ). Таким приладам властиві наступні особливості: високий ступінь інтеграції, ефективне використання площі, велика яскравість, висока надійність, можливість створення індикатора будь-якої форми. Електролюмінісцентний елемент змінного струму складається з прозорого металевого, такого, що світиться, відображає діелектричного і контактного шарів[1] .
Розділ 2. Конструкції і оптичні параметри ЕЛ, дисплеїв
2.1 Конструкція стандартного тонко плівкового ЕЛ, дисплея
Тонкоплівкові електролюмінісцентні (TFEL) дисплеї засновані на розміщенні ізолюючих шарів, а також шару світло випромінюючого люмінофора між прозорими і металевими електродами, як показано на рисунку 2.1. Зазвичай тонко плівковий ЕЛ дисплей побудований на скляній підкладці завтовшки 1,1 мм, виконаною з натрієвого вапна (розмір 195 х 265 мм), і герметичним покривним склом завтовшки 1,1 мм. Спеціальною технологією, розробленою компанією Planar Systems, що реалізовується, є атомне осадження шарів (ALD). Цей метод забезпечує дуже однорідні, добре контрольовані і вільні від пір, шари тонкої плівки і надзвичайно тверді ізолюючі плівки. Світло генерується за допомогою ударного збудження атомів Мn в люмінофорі ZNS електронами, переміщуваними за допомогою прикладеної напруги змінного струму (див. рис. 2.2)[5]. Збудлива напруга може бути синусоїдальної або прямокутної форми.
Рис 2.1. Тонко плівковий електролюмінісцентний дисплей у конфігурації матричного дисплея [5].
Воно прикладається методом мультиплексування між електродами стовпців на одній стороні і електродами рядків на іншій стороні люмінофора (див. рисю2.3). Кожного разу, коли напруга перевищує поріг номінальної напруги близько 200 В, генерується короткий імпульс світла з постійною часу загасання менш ніж 1 мс, і таким чином яскравість випромінюваного світла приблизно пропорційна частоті збудження.
Рис 2.2. Випромінювання світла шляхом збудження атомів Mn за допомогою електронів у люмінофорі ZnS[5].
Рис. 2.3. Управління матричним електролюмінісцентним дисплеєм за допомогою напруги змінного струму[6].
У типових застосуваннях матричних дисплеїв частота збудливої напруги може досягати 250 Гц. У семи сегментних типах дисплеїв (пряме управління без мультиплексування) використовуються навіть вищі частоти. Високовольтні імпульси генеруються електронікою TFEL дисплея, що управляє. Напруга живлення дисплея 5 В і/або 12 В. У стандартному дисплеї ЕЛ як шар люмінофора застосовується ZnS:Mn, і результуючий спектр випромінювання світла є жовтим (див. рис. 2.4.) з максимумом близько 580 нм. Залежно від вимог до кольору, шляхом зміни типу люмінофора можуть бути також отримані інші кольори [5,6].
Рис 2.4. Спектр світлової віддачі люмінофора (ZnS:Mn) електролюмінесцентного дисплея[6].
Завдяки справжній структурі твердого тіла досягаються различ ные корисні параметри. Електролюмінесцентні дисплеї є надзвичайно витривалими в широкому діапазоні робочих температур (–50.85°С, обмежений електронікою, що управляє ), мають тривалий термін служби більше 100 000 ч, широкий кут огляду (більш 160°), короткий час відгуку (менше 1 мс) у всьому діапазоні температур і хороший контраст[6].
2.2 Технологія прозорого ЕЛ, дисплея
Прозорі електролюмінісцентні дисплеї конструюють на базі структури стандартного дисплея ЕЛ шляхом заміни заднього металевого електроду прозорим електродом (наприклад, з окислу індия і олова, ITO) і видалення решти непрозорих шарів із структури дисплея. Для максимального збільшення світло пропускання необхідно погоджувати коефіцієнт заломлення суміжних шарів. Схема поперечного перетину структури показана на рисунку 2.5. Іншим важливим параметром в оптимізації шарів прозорого дисплея ЕЛ є зменшення «ефекту ореолу», який обумовлений внутрішніми віддзеркаленнями, коли не узгоджений коефіцієнт заломлення шарів. У оптичних системах цей ефект також називають оптичним хвилеводом. Відбите світло переміщається між шарами і врешті-решт покидає випромінюючий піксель завдяки ефекту розсіяння. Цей ефект спостерігається, головним чином, в прозорому дисплеї ЕЛ, проте їм можна управляти.
Рис 2.5. Схема поперечного перерізу тонко плівкової електролюмінісценції[7].
Критерієм оцінки даного ефекту є відстань від пікселя, на якому не видимий витік світла при спостереженні через мікроскоп. Як показано нижче, зона ефекту ореолу зменшена шляхом оптимізації шарів і переходу на люмінофор без розсіювання. Іншим способом зменшення ореолу є покриття зовнішніх поверхонь матеріалами, що анти відображають. Іншою важливою проблемою є необхідність виготовлення гладкого шару люмінофора з метою мінімізації розсіяння світла. На початковій стадії розробки використовувався стандартний склад люмінофора і коефіцієнт пропускання був всього лише 75%. Розробка гладших плівок поліпшила світло пропускання до 84%. Дуже складно зробити електроди прозорими, підтримуючи при цьому високу провідність, таку ж, як у металевих електродів. Під час роботи над цим проектом було пройдено декілька етапів для досягнення належних параметрів. Вища провідність також була ключовим параметром для забезпечення надійності панелі при випробуваннях в жорстких умовах навколишнього середовища, включаючи тривалу експлуатацію при високих температурах[7].
Електроніка прозорого дисплея, що управляє, аналогічна стандартним дисплеям ЕЛ. Підключення до майданчиків електродів контуру може бути виконане, наприклад, за допомогою автоматизованої збірки на стрічковому носієві (TAB) для драйверів стовпців і термосварки до друкарської плати для з'єднання з драйверами рядків, що управляють, розміщеними в корпусах для поверхневого монтажу. Можуть бути розглянуті і інші схеми підключення[6,7].
0 комментариев