2.4 Расчет элементов входного каскада
Выбор рабочей точки транзистора
Выбор рабочей точки А транзистора в режиме покоя, когда входной сигнал отсутствует, сводится к выбору тока коллектора IкА и напряжения UкэA в первоначальном предположении Rэ= 0. т.е. при заземленном эмиттере.
Точку покоя выберем исходя из заданных значений амплитуды напряжения на коллекторе UНМ и тока коллектора IНМ, которые по заданным значениям UН и IН определяются как UНМ=UН = 0.11 [В] и IНМ=IН.= 0.00012 [А].
Определим вид транзистора:
PК= UНМ IНМ =0.013 [мВт], транзистор малой мощности
Определим напряжение UКЭАиз выражения:
=2.61 [В], (для транзисторов малой мощности UЗАП = (1¸2.5) [В])
где KЗ–коэффициент запаса равный (0.7¸0.95)
ЕП=2UКЭА=5.22 [B]
Сопротивление RK находим как:
Сопротивление RЭ вычисляется:
Считаем, что на вход подается какой-либо переменный сигнал, тогда для переменного сигнала параллельно включается . Для переменного сигнала будет идти по какой-либо другой динамической линии нагрузки. Она будет обязательно проходить через А. Поэтому строим динамическую линию нагрузки.
Через точку А проводим линию динамической нагрузки, под углом .
; ;
где KM=10000 масштабный коэффициент
Выбирая значения EП из стандартного ряда, тем самым изменяя положение динамической линии нагрузки, проверяем условие. В нашем случае условие выполнилось при EП=6.3 [B].
Расчет элементов фиксации рабочей точки
Фиксация рабочей точки A каскада на биполярном транзисторе (рис. 1) осуществляется резистивным делителем R1, R2. Выберем такой транзистор, у которого и . В данном случае таким транзистором может быть транзистор КТ209A.
Из положения рабочей точки и выходных характеристик транзистора, рассчитаем величину дифференциального коэффициента передачи тока базы b:
где DIК,DIБ – окрестность рабочей точки А
Найдем ток IБА:
По входным характеристикам транзистора определим величину UБЭА =0,55 [B]
Так же из входной характеристики находим входное дифференциальное сопротивление транзистора h11Э:
Рассчитаем величину по следующему эмпирическому соотношению: , где - тепловой ток коллекторного перехода, заданный в справочнике при температуре t0; А = 2,5 для кремниевых транзисторов. вычислим как , выберем .
Рекомендуемое значение N вычисленное как ;
Вычислим R1, R2:
где
Корректность расчета оценим вычислением тока Iдел, причем необходимо соблюдение неравенства . Вычислим Iдел по формуле:
Полученное значение удовлетворяет соотношению
Найдем сопротивление резистивного делителя:
Найдем входное сопротивление данного каскада
.
Расчет емкостных элементов усилительных каскада
Для каскадов на биполярном транзисторе (рис. 1) значение емкостей конденсаторов C1,
;
;
;
Расчет коэффициента усиления напряжения каскада
2.5 Расчет элементов цепи ООС
По вычисленным в п. 2.1. значениям и рассчитаем величину
.
Найдем величину сопротивления обратной связи из следующего соотношения:
;
;
RОС = 77160 [Ом].
2.6 Расчет коэффициента усиления напряжения усилителя
Рассчитываемый коэффициент усиления всего усилителя равен произведению коэффициентов. усиления всех трех каскадов:
Что превышает необходимое 222.
3. Моделирование
Моделирование будем выполнять с помощью пакета схемотехнического моделирования Micro-Cap 3. В результате моделирования получим переходные и частотные характеристики как отдельных каскадов усилителя, так и всей структуры в целом. Целью моделирования является установление корректности расчета и степени соответствия расчетных параметров требованиям технического задания.
3.1 Корректировка схемы и определение ее параметров
Для получения результатов, определяемых исходными данными, произведем корректировку значений сопротивлений резисторов и емкостей конденсаторов усилителя. Полученные после корректировки значения приведены в спецификации (см. Приложения).
По графикам АЧХ и ФЧХ, полученным в результате моделирования определим значения K.
Реально достигнутый коэффициент K найдем из графика переходной характеристики:
а) для усилителя без обратной связи
K=307.6
б) для усилителя с обратной связью
K=300
Заключение
В результате выполнения данной курсовой работы были изучены методы проектирования и разработки электронных устройств в соответствии с данными технического задания. Был произведён расчёт статических и динамических параметров электронных устройств. А также было изучено практическое применение ЭВМ для схемотехнического проектирования электронных устройств. Для моделирования был использован пакет схемотехнического моделирования Micro-Cap 3. В ходе курсового проектирования было проведено моделирование усилителя в частотной и временной областях.
Библиографический список
1. Баскакова И.В., Перепёлкин А.И. Усилительные устройства: Методические указания к курсовой работе. - Рязань, РГРТА, 1997.36 с.
2. Транзисторы для аппаратуры широкого применения: Справочник. К.М. Брежнева, Е.И. Гантман, Т.И Давыдова и др. Под ред. Б.Л. Перельмана. - М.: Радио и связь, 1982.656 с.
3. Транзисторы. Справочник. Издание 3-е. Под редакцией И.Ф. Николаевского. - М.: Связь, 1969.624 с.
4. Анализ электронных схем. Методические указания к лабораторным и практическим занятиям. Баскакова И.В., Перепёлкин А.И.Р.: 2000,32 с.
Приложения
Моделирование выходного каскада
Kuреальный ≈25
Моделирование промежуточного каскада
Kuреальный ≈7.6
Моделирование входного каскада
Kuреальный ≈2.5
Моделирование усилителя без ООС
Kuреальный ≈307.6
Моделирование усилителя с ООС
Kuреальный ≈300
... , получаем: =220 =26 K=Kвых×Kвх=5720>33.123, следовательно расчет усилителя окончен. 1.6 Построение характеристики Moc(w) Характеристика Moc(w) для двухкаскадного усилителя с отрицательной обратной связью описывается выражением: Оно имеет одинаковый вид для нижних и верхних частот, но предполагает подстановку разных значений x: x=wн/w для области нижних и средних частот ...
... В настоящее время в качестве термокомпенсирующего элемента обычно используется диод в прямом смешении, включенный в цепь базы транзистора. Принцип построения таких устройств практически одинаков для усилителей постоянного и переменного тока. Все рассмотренные выше УПТ имеют большой температурный дрейф (eдр составляет единицы милливольт на градус). Кроме того, в них отсутствует зримая компенсация ...
... даже иногда вредным. Однако превратить УПТ в усилитель переменного тока можно достаточно просто (например, вводя разделительные емкости). Поэтому большинство массовых операционных усилителе выпускаются как усилители постоянного тока. Условное обозначение ОУ приведено на рисунке 7.1. В обозначении функции (¥ > – усилитель с бесконечно большим коэффициентом усиления) первый символ (¥) ...
... устройства с разных позиций. Поэтому для полной характеристики конкретного усилителя необходимо знание всех его основных признаков. Основные технические показатели усилителей Важнейшими техническими показателями усилителя являются: коэффициенты усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, коэффициент полезного действия, номинальное ...
0 комментариев