3.1 Выбор топологии сети

Для того чтобы спроектировать сеть в целом нужно пройти несколько этапов, на каждом из которых решается та или иная функциональная задача, поставленная в техническом задании на стадии проектирования. Первой из них является задача выбора топологии сети. Эта задача может быть решена достаточно легко, если знать возможный набор базовых стандартных топологий, из которых может быть составлена топология сети в целом. Ниже рассмотрены такие базовые топологии и их особенности.

Топология "точка-точка". Сегмент сети, связывающий два узла А и В, или топология "точка-точка", является наиболее про­стым примером базовой топологии SDH сети. Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резервирования канала приема/передачи, так и по схеме со 100% резервированием типа 1+1, использующей основной и резервный элек­трический или оптический агрегатные выходы (каналы приема/передачи). При выходе из строя основного канала сеть в считанные десятки миллисекунд может автоматически перейти на резерв­ный.

Несмотря на свою простоту, именно эта базовая топология наиболее широко используется при передаче больших потоков данных по высокоскоростным магистральным каналам, например, по трансокеанским подводным кабелям, обслуживающим магистральный цифровой телефонный трафик. Она же используется как составная часть радиально-кольцевой топологии (используется в качестве радиусов кольцевой сети) и является основой для топологии типа "последовательная линейная цепь".

Топология "последовательная линейная цепь". Эта базовая топология используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек на линии, где могут вводится и выводиться каналы доступа.

Она реализуется с использованием как терминальных мультиплексоров на обоих концах цепи, так и мультиплексоров ввода/вывода в точках ответвлений. Эта топология напоминает по­следовательную линейную цепь, где каждый мультиплексор ввода/вывода является отдельным ее звеном. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, либо более сложной цепью с резервированием типа 1+1. Последний вариант топологии часто называют уплощенным кольцом.

Топология "звезда". В этой топологии один из удаленных узлов сети, связанный с центром коммутации (например, цифровой АТС) или узлом сети SDH на центральном кольце, играет роль концентратора, где часть трафика может быть выведена на терминалы пользователей, тогда как оставшаяся его часть может быть распределена по другим удаленным узлам.

Топология “кольцо”. Эта топология, широко используется для построения сетей SDH первых трех уров­ней SDH иерархии: 155, 622 и 2500 Мбит/с. Основное преимущество этой топологии - легкость организации защиты типа 1+1, благодаря наличию в мультиплексорах SMUX двух пар (основной и резервный) оптических агрегатных выходов (каналов приема/передачи): восток - запад, дающих возможность формирования двойного кольца со встречными потоками.

Радиально-кольцевая архитектура. В этой сети вместо последовательной линейной цепи в радиальной части может быть использована и более простая топология "точка-точка". Число радиальных ветвей ограничивается только из соображе­ний допустимой нагрузки (общего числа каналов доступа) на мультиплексор доступа (вво­да/вывода), установленный на кольце.

Топология "ячеистая сеть". Рассмотренные выше базовые топологии, как более характерные для магистральных транспорт­ных сетей, широко используются при построении новых сетей SDH. Традиционные телефонные сети, основанные на использовании узлов коммутации, построены в большинстве своем на основе топологии смешанной сети, в которой, однако можно выделить базовую топологию ячеистой сети - сети, составленной из замкнутых ячеек или контуров, или технологических колец.

В них используется разная форма ячеек сети, например, треугольная (3 узла), четырехугольная (4 узла), пятиугольная (5 узлов), шестиугольная (6 узлов). Существенное отличие ячеистой топологии, например от кольцевой, в том, что потоки в звеньях, соединяющих узлы, могут быть разными, зависящими от требуемой пропускной способности конкретного звена. При этом замкнутый контур ячейки формирует так называемое технологическое кольцо, потоки которого в разных сечениях - разные. Однако ячейка, если нуж­но, может играть и роль полноценного, а не только технологического кольца.

Характерная особенность ячеистой топологии - возможность расширения сети путем на­ращивания (мультиплицирования) однотипных ячеек без потери топологической однородности сети. Таким свойством обладают все сети, использующие перечисленные выше ячейки [2].

Исходя из вышесказанного и учитывая то, что ячеистая сеть более дешевая по сравнению с кольцевой топологией из-за меньших расходов на линейно-кабельные сооружения, расчет сети будем производить на основании ячеистой топологии сети. Недостатком данной топологии является организация защиты выделенных каналов. Этот вопрос решается путем направления выделенного канала по двум маршрутам с совпадающими конечными точками.

Такая схема защиты «по разнесенным маршрутам» (1:1) иногда более предпочтительна, чем схема защиты 1+1 в кольце SDH. Однако она требует более тщательного расчета числа потоков, проходящих по отдельным ветвям сети, для того, чтобы убедиться, что оно не превышает возможности кросс-коммутатора узлового мультиплексора.

Проведем этот расчет, основываясь на таблице 1.1. В результате получим таблицу 3.1, дающую сводную информацию о потоках, проходящих по ВОК между узловыми мультиплексорами на станциях. Число каналов дано по этапам 1/2.

В качестве основных и резервных каналов были выбраны следующие маршруты:

-  основной А→В, резервный А→С→D→B;

-  основной А→С, резервный А→В→D→С;

-  основной В→D, резервный В→А→С→D;

-  основной C→D, резервный C→А→B→D;

-  основной C→E, резервный C→D→F→E;

-  основной D→F, резервный D→C→E→F;

-  основной E→F, резервный E→C→D→F.

Таблица 3.1 – Основные и резервные потоки по сегментам ячеистой сети

А→В А→С В→D C→D C→Е D→F E→F
A-B 25/40 A-B(p) 5/6 A-B(p) 5/6 A-B(p) 5/6 А-Е 30/25 A-E(p) 3/3 A-E(p) 3/3
A-C(p) 2/35 A-C 40/75 A-C(p) 2/35 A-C(p) 2/35 A-F 15/20 A-F(p) 2/4 A-F 15/20
A-D 50/15 A-D(p) 4/1 A-D 50/15 A-D(p) 4/1 B-E(p) 3/1 B-E 15/50 B-E 15/50
A-E(p) 3/3 A-E 30/25 A-E(p) 3/3 B-C 20/30 B-F(p) 2/3 B-F 6/15 B-F(p) 2/3
A-F(p) 2/4 A-F 15/20 A-F(p) 2/4 B-D(p) 3/10 C-E 32/40 D-E 10/20 D-F(p) 1/0
B-C(p) 2/5 B-C(p) 2/5 B-C 20/30 C-D 20/42 D-F(p) 1/0 D-F 10/0 D-E 10/20
B-D(p) 3/10 B-D(p) 3/10 B-D 15/40 D-F(p) 1/0 D-E(p) 2/4 C-F(p) 2/0 E-F 6/10
B-E(p) 3/1 B-E(p) 3/1 B-E 15/50 D-E(p) 2/4 C-F 24/0 C-E(p) 4/6
B-F(p) 2/3 B-F(p) 2/3 B-F 6/15 C-E(p) 4/6  C-F 24/0
C-D(p) 2/8 C-D(p) 2/8 C-D(p) 2/8
D-E(p) 2/4
Сумма 124 Сумма 154 Сумма 210 Сумма 134 Сумма 93 Сумма 92 Сумма 112


Информация о работе «Оптические, цифровые телекоммуникационные системы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 34850
Количество таблиц: 6
Количество изображений: 5

Похожие работы

Скачать
56087
1
6

... устройства воздействуют помехи в виде излучений космоса, Солнца, Земли и др. планет. Правильный и точный учет всех особенностей спутниковой связи позволяет выполнить оптимальное проектирование системы связи, обеспечить её надежную работу в наиболее сложных условиях и в то же время исключить излишние энергетические затраты, приводящие к неоправданному усложнению наземной и бортовой аппаратуры. В ...

Скачать
53128
6
91

... можно установить блокировку выдачи номера. Телекоммуникационные сети Транспортная сеть – это система, которая обеспечивает распространение некоторого продукта среди его потребителей, территориально разбросанных. Телекоммуникационные сети распространяют исключительно информацию. Групповой тракт – совокупность технических средств, обеспечивающих передачу сигналов электросвязи или в полосе ...

Скачать
31074
0
0

... ПО. Центральное ПО может взаимодействовать с другими функциональными блоками в центральном процессоре. Взаимодействие функциональных блоков всегда происходит на уровне CP. 3 Виды доступа В коммутационной системе AXE-10 используется различное оборудование доступа, которое позволяет строить сети с достаточной гибкостью. К этому оборудованию относится следующее: - Удаленный абонентский ...

Скачать
117563
27
22

... в соответствии с действующим законодательством и системой управления охраны труда [1-3]. 13 Заключение В данном дипломном проекте, в соответствии с заданием рассматривались вопросы модернизации телекоммуникационного оборудования в ЗАО “Кузбассэнергосвязь”. Исходя из расчета необходимого числа каналов, была выбрана система передачи OptiX OSN 3500 фирмы «Huawei Technologies».  Был ...

0 комментариев


Наверх