11. Здесь i определяет класс состояний, т.е. равно номерам тех станций, на которых находятся маркера, r определяет номер состояния.

Введем обозначение M=() – множество номеров тех станций, на которых находятся маркера, R=(), , l{1,2,3}, - обозначает количество сообщений на l-той АС. Также обозначим через P() – вектор-строку вероятностей состояний КЛВС.

Обозначим через - вероятность того, что за время  на i-тую АС не поступит ни одного сообщения; - вероятность того, что за время на i-тую АС поступит m сообщений; - вероятность того, что за время  на i-тую АС поступит m и более сообщений.

Так как поток сообщений пуассоновский, то имеем:

=

=

, i{1,2,3}

Изучая поведение КЛВС во вложенные Марковские моменты, получим следующую процедуру определения стационарных вероятностей сети, которая является частным случаем теоремы из пункта 2.1: стационарные вероятности рассматриваемой КЛВС вычисляются из соотношений:


P (2,3)=P (1,2) A (1,2);

P (3,1)=P (2,3) A (2,3);

P (1,2)=P (3,1) A (3,1);

А – матрица вероятностей переходов из i-того периодического класса в состояние (i+1) – го класса, элементы которой вычисляются по формуле:

a()=

времена вычисляются по следующим формулам:

а также вероятность перехода равна нулю, если:

1) >0 , Q={1,2,3}

2)

Для обоснования правильности формул времени необходимо учитывать следующие положения:

1)  если поступает сообщение, а соответствующий буфер занят полностью, то сообщение теряется, и при подсчете поступивших сообщений оно не учитывается;

2)  если сообщение не передается, то из данного буфера оно никуда не может исчезнуть, поэтому если при переходе из некоторого состояния в соседнее какое-то сообщение теряется, то вероятность данного перехода равна 0;

3)  при передаче сообщения из АС, на которой есть маркер, буфер данной станции блокируется;

4)  со станции с маркером может передаваться не более одного сообщения;

5)  на тех станциях, на которых нет маркеров, может быть вероятность равна единице в том случае, если в i-том периодическом классе и в (i+1) – вом буфер станции был полностью занят.

В приложении будет предоставлены матрицы переходов для рассматриваемой КЛВС. Обозначение  означает, что маркеры находились на первой и второй станциях.

2.3 Определение стационарных вероятностей состояний многомаркерной, несимметричной КЛВС с буферами различной емкости, с N АС и k=N маркерами, с ординарной дисциплиной обслуживания

Будем рассматривать поведение КЛВС в моменты поступления маркеров на АС. В этом случае изменение состояний КЛВС образуют конечную цепь Маркова.

Под состоянием КЛВС будем понимать состояние всех АС кольца в момент поступления на них маркеров. Каждая АС может находиться всегда в одном из состоянии.

Все состояния КЛВС делятся на N периодических классов, каждый из которых содержит в рассматриваемом случае состояние.

Особенности протокола приводят к тому, что указанная цепь Маркова является неприводимой, периодической с периодом, равным N.

Некоторый j-тый класс (j{1,2,…, N}) соответствует поступлению некоторого фиксированного маркера на j-тую АС. Вероятности переходов из j-того периодического класса в (j+1) – ый образуют () матрицу. Зафиксируем некоторый маркер и будем рассматривать поведение сети в моменты поступления этого маркера АС.

Закодируем состояния КЛВС парами чисел (i, r), i=(), 0.Здесь i определяет класс состояний, т.е. равно номеру станции, на которой находятся маркеры, r определяет номер состояния.

Введем обозначение M=() – множество номеров тех станций, на которых находятся маркера, R=(), , l{1,…, N}, - обозначает количество сообщений на l-той АС. Также обозначим через P() – вектор-строку вероятностей состояний КЛВС.

Обозначим через - вероятность того, что за время  на i-тую АС не поступит ни одного сообщения; - вероятность того, что за время на i-тую АС поступит m сообщений; - вероятность того, что за время  на i-тую АС поступит m и более сообщений.

Так как поток сообщений пуассоновский, то имеем:

=

=

, i{1,2,…, N}


Изучая поведение КЛВС во вложенные Марковские моменты, получим следующую процедуру определения стационарных вероятностей сети, которую можно записать в виде:

P()=P() A

где А - матрица вероятностей переходов из i-того периодического класса в состояние (i+1) – го класса, элементы которой вычисляются по формуле:

a()=++,

времена вычисляются по следующим формулам:

 

 

а также вероятность перехода равна нулю, если:

1) >0 , Q={1,2,3,…, N}

2)  

Для обоснования правильности формул времени необходимо учитывать следующие положения:

1)  если поступает сообщение, а соответствующий буфер занят полностью, то сообщение теряется, и при подсчете поступивших сообщений оно не учитывается;

2)  если сообщение не передается, то из данного буфера оно никуда не может исчезнуть, поэтому если при переходе из некоторого состояния в соседнее какое-то сообщение теряется, то вероятность данного перехода равна 0;

3)  при передаче сообщения из АС, на которой есть маркер, буфер данной станции блокируется;

4)  со станции с маркером может передаваться не более одного сообщения.

5)  на тех станциях на которых нет маркеров может быть вероятность равна единице в том случае, если в i-том периодическом классе и в (i+1) – вом буфер станции был полностью занят.



Информация о работе «Несимметричная многомаркерная кольцевая локальная сеть с буферами конечной емкости и ординарной дисциплиной обслуживания»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 36475
Количество таблиц: 5
Количество изображений: 0

0 комментариев


Наверх