2 Проектирование и расчет геометрических размеров элементов ИМС

В данном разделе приведена методика расчетов геометрических размеров биполярных транзисторов и геометрических размеров резисторов.

2.1 Расчет биполярных интегральных транзисторов

В полупроводниковых ИМС на биполярных транзисторах основным является n-p-n транзистор. Все n-p-n транзисторы можно разделить на 2 группы:

а. Универсальные,

б. Специальные.

Универсальные в свою очередь делятся на: микро и маломощные (рассеиваемая мощность в диапазоне 0,3…3 мВт), транзисторы средней мощности (3…25мВт), мощные транзисторы (более 25мВт). Специальные делятся на: многоэмиттерный транзистор и p-n-p транзистор.

Выбор геометрических размеров транзисторов, количество эмиттеров, базовых и коллекторных контактов и их форма определяются требованиями к параметрам. Максимальная плотность эмиттерного тока, превышение которой приводит к уменьшению коэффициента усиления транзистора, ограничивает рабочий ток. Определение размеров эмиттерной области а, следовательно, и топологии транзистора проводится исходя из обеспечения максимального коэффициента усиления при рабочем токе эмиттера [2].

Расчет геометрических размеров эмиттерной области ведется следующим образом. Длина эмиттерной области рассчитывается по формуле

le = 3dmin + Δ,(2.1)

где

dmin-минимальный геометрический размер, обеспечиваемый используемым методом литографии.

Далее определяем максимальный удельный ток для произвольного случая по формуле

,(2.2)

где

Iemax-эмиттерный ток, превышение которого вызывает переход к высокому уровню инжекции;

β-максимальное значение коэффициента передачи тока;

.(2.3)

При ψ < 1 рабочей или “активной” является левая часть эмиттера, ближайшая к базовому контакту.

После определения геометрических размеров эмиттерной области транзистора необходимо определить полные геометрические размеры этого элемента. Для примера выберем одну из конфигураций транзистора (рис.2.1).

Найденные исходные данные le и be.

lb ≥ le + 4dmin + 2Δфш + Δсовм ,(2.4)

bb ≥ be + 2dmin + 2Δфш + Δсовм ,(2.5)

где

Δсовм–погрешность при совмещении фотошаблонов,

Δфш–погрешность при изготовлении фотошаблонов.

,(2.6)

,(2.7)

где

a-минимальное расстояние между краем разделительной диффузии и краем диффузии n+- слоя к коллектору.

,(2.8)

,(2.9)

.(2.10)

Рисунок 2.1 - Топологический чертеж маломощного n-p-n транзистора

Размеры коллектора определяются как

,(2.11)

.(2.12)

По такой же методике рассчитываются геометрические размеры таких элементов, как p-n-p транзисторы и диоды на основе какого-либо перехода транзистора.

Рассчитанные таким образом линейные размеры транзистора с конкретной конфигурацией является минимально возможным для данного типа технологии и должны быть учтены для конкретных параметров и конкретных областей применения транзистора.

2.2 Расчет геометрических размеров резисторов

Резисторы биполярных микросхем обычно изготавливаются на основе отдельных диффузионных слоев транзисторной структуры или из поликремния.

Исходными данными при проектировании резисторов являются: номинал – R, поверхностное сопротивление слоя, на котором он изготовляется – RS, мощность рассеяния – P; погрешность номинала – YR, температурный диапазон работы – ΔT, bmin, погрешности изготовления – ; удельная мощность рассеяния – P0 и т.д [3].

В диапазоне номиналов от 100 Ом до 50 кОм резисторы изготовляют на основе базового слоя микросхемы. Его обычные параметры:

Расчет начинаем с определения коэффициента формы:

.(2.13)

Если Кф > 1, то расчет начинаем с расчета b

Если Кф < 1, то расчет начинаем с расчета l

Если R = 50…1000 Ом, тогда резисторы делаются прямоугольной формы.Если R > 1…2 кОм, то рекомендуется изготавливать резистор сложной формы с любым числом изгибов и любой длиной прямоугольных участков.

,(2.14)

где

-минимальная ширина резистора, обеспечивающая необходимую рассеиваемую мощность;

-минимальная эффективная ширина резистора, обеспечивающая заданную точность изготовления.

,(2.15)

,(2.16)

,(2.17)

где

YКф-относительная погрешность изготовления резисторов;

YR-относительная погрешность номинала резистора;

YRs-относительная погрешность поверхностного сопротивления;

-относительная погрешность изменения номинала при изменении температуры.

Затем зная bрасч и Кф определяем lрасч,

lрасч = Кф∙bрасч.(2.18)

Рассчитав предварительную длину и ширину резистора необходимо проверить соотношения:

-для резистора прямоугольной формы

,(2.19)

где

k-коэффициент приконтактной области. (Определяется по таблицам, графикам и монограммам.)

-для резистора сложной формы

,(2.20)

где

n-число прямоугольных участков;

(n-1)-число изгибов;

0,55-коэффициент, учитывающий один изгиб.

При этом следует помнить, что bрасч это эффективная, а не топологическая ширина резистора.

,(2.21)

где

bрасч-топологическая ширина резистора (ширина на фотошаблоне);

-расползание диффузии в боковую область при диффузии.

.(2.22)



Информация о работе «Основы проектирования интегральных микросхем широкополосного усилителя»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 31231
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
80695
0
0

... коэффициенты линейного расширения материалов подложек, корпусов и вспомогательных материалов должны быть согласованы для обеспечения работы микросхем при повышенных уровнях мощности. Конструирование СВЧ микросхем включает расчет и проектирование изделия по заданным электрическим параметрам с учетом процессов сборки и регулировки. При этом определяют вариант схемы узла, материал и геометрические ...

Скачать
65822
11
1

... кафедру для утверждения. После утверждения куратор проекта от кафедры проставляет оценку студенту. ЛИТЕРАТУРА Основная литература 1.  Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств. М.: Радио и связь, 1997. 2.  Ногин В.Н. Аналоговые электронные устройства. М.: Радио и связь, 1992. 304 с. 3.  Остапенко Г.С. Усилительные устройства. М.: Радио и связь, 1989. 400 с. ...

Скачать
89289
22
30

... простой в применении методики расчета МКЦ необходимой при проектировании сверхширокополосных усилителей. Целью данного дипломного проекта является разработка методики расчета МКЦ сверхширокополосного усилителя на мощных полевых транзисторах, обеспечивающий максимальный коэффициент передачи при заданных неравномерности АЧХ и полосе пропускания. Данная методика необходима для создания интегральных ...

Скачать
65585
10
0

... на типы осуществляют по назначению усилителя, характеру входного сигнала, полосе и абсолютному значению усиливаемых частот, виду используемых активных элементов. По своему назначению усилители условно делятся на усилители напряжения, усилители тока и усилители мощности. Если основное требование – усиление входного напряжения до необходимого значения, то такой усилитель относится к усилителям ...

0 комментариев


Наверх