3.2 Проверка теплового баланса
Проверка теплового баланса котлоагрегата заключается в определении невязки баланса по уравнению:
DQ = Qр hка - (Qл + Qкп + Qэк)
где: Qл, Qкп , Qэк — количества теплоты, воспринятые луче-воспринимающими поверхностями топки, конвективным пучком и экономайзером; в формулу подставляют значения, определенные из уравнения баланса.
При правильном расчете невязка не должна превышать 0,5 %
Q = 37310 0,903 - (13660,6 + 16271,89 + 3796,8) = - 38,36
Q 100 / Qрн hка = -38,36 100 / 37310 0,903 = 0,11 % < 0,5 %
Расчет можно считать оконченным.
В результате выполненного проекта в отопительно-производственной котельной предусматривается установка шести котлов ДЕ 6,5-14- ГМ работающих на газе. Паропроизводительность и тепловая мощность котельной полностью обеспечивают потребности производства и собственных нужд.
При выполнении данного курсового проекта были рассчитаны тепловые нагрузки, определены параметры котельной, произведены расчёты процессов горения, теплового баланса котельных агрегатов, рассчитан расход газа на котёл, было выбрано вспомогательное оборудование.
Так же был произведены тепловые расчёты топок, газоходов котла, выполнен конструктивный расчёт экономайзера (расчёт хвостовых поверхностей котельного агрегата) и проверка теплового баланса.
1. Тепловые и атомные электростанции. М.: Энергоатомиздат. 1989 г. Под ред. В. А. Григорьева, В. М. Зорина.
2. Р. И. Эстеркин. Котельные установки. Курсовое и дипломное проектирование. Л.: Энергоатомиздат, 1989 г.
3. Гусев К. Л. Основы проектирования котельных установок. М.: Стройиздат, 1973 г.
4. Сидельский Л. Н., Юренев В. Н. Котельные установки промышленных предприятий. М.: Энергоиздат, 1986 г.
5. Зах Р. Г. Котельные установки. М.: Энергия, 1968 г.
6. К. Ф. Роддатис, А. Н. Полтарецкий. Справочник по котельным установкам малой производительности. М.: Энергоатомиздат, 1991 г.
7. Г. Н. Делягин, В. И. Лебедев и др. теплогенерирующие установки. М.: Стройиздат, 1986 г.
8. Теплотехнический справочник. Том 2. М.: Энергоатомиздат, 1976 г.
1. ОПИСАНИЕ КОТЕЛЬНОЙ
Паровая котельная оборудована двумя котлами ДКВР 20/13 и котлом ДЕ-16-14-225ГМ с соответствующим вспомогательным оборудованием, водоподготовкой, деаэрационно-питательной, сетевой, подпиточной установками установкой сбора и перекачки конденсата. При котельной имеется мазутное хозяйство емкостью 2х1000м3.
Котельная снабжает теплом и паром собственное производство пивзавода.
Котлы ДКВР 20/13в 1998г. выработали свой ресурс и после капремонта один котел газифицируется, а второй консервируется.
РЕЦЕНЗИЯ
на дипломный проект студента энергетического факультета
Гомельского государственного технического
университета им. П.О. Сухого
Соловьева Виталия Николаевича
на тему: "Перевод на природный газ котла ДКВР 20/13 Речицкого пивзавода."
В данном дипломном проекте произведен расчет по переводу котла ДКВР 20/13 с мазута на природный газ и определены: необходимый расход газа для покрытия заданной нагрузки, параметры тепловой схемы, необходимая поверхность теплообмена экономайзера, т.е. выполнен его конструктивный расчет. Кроме того, выполнен поверочный расчет котлоагрегата, рассчитана схема водоподготовки, а также сделан выбор основного и вспомогательного оборудования. Для надежной и безопасной эксплуатации котлоагрегата разработаны схемы автоматического контроля и регулирования процессов. В проекте отражены вопросы техники безопасности и охраны окружающей среды, а также на основе сметно-финансовой документации произведен расчет основных технико-экономических показателей, сделан сравнительный анализ работы котла на мазуте и газе, на основе которого определен экономический эффект.
Следует отметить достаточно хороший уровень технической подготовки дипломника и умение использовать свои знания при решении поставленных практических задач, а также хорошее качество графических разработок и оформление расчетно-пояснительной записки на ПЭВМ.
Соловьев В.Н. освоил технику инженерного конструирования и расчетов, подготовлен для работы по специальности на производстве, в проектных и научно-исследовательских организациях.
Оценка проекта: дипломный проект заслуживает оценки "хорошо".
Начальник ПТО ГТС Ефименко Виктор Александрович
на студента энергетического факультета
Гомельского государственного техническогоуниверситета им. П.О. Сухого
Соловьева Виталия НиколаевичаВо время работы над дипломным проектом зарекомендовал себя как старательный студент, проявил активность и инициативу в сборе материала.
Показал хорошие знания и навыки по всем разделам проекта. Проявил творческий подход к выполнению дипломного проекта. Благодаря полученным знаниям может считаться готовым к серьезной инженерной работе.
Полученное задание по дипломному проекту выполнил качественно и в срок.
Заслуживает оценки «хорошо».
Дипломник Соловьев В.Н. заслуживает присвоения квалификации инженер-теплоэнергетик.
Руководитель проекта ассистент кафедры Иванова Е.М.
"Промышленная теплоэнергетика и экология"
Экология.
Общие положенияГаз не содержит твердых примесей, связанного азота и практически не содержит серы, за исключением поставок газа, не прошедшего стадий очистки на газоперерабатывающем предприятии, или когда сжижаются попутные газы, технологические сбросные газы нефтехимического или металлургического производства.
Отсюда следует, что борьба с выбросами оксидов азота часто является единственным средством, позволяющим обеспечить чистоту атмосферы в районе расположенного теплоэнергетического объекта, работающего на газу.
Концентрация оксидов азота в дымовых газах при сжигании природного газа в крупных котлах (производительностью по пару 210-420 т/ч) составляет обычно 0,4-0,8 г/м3 (в пересчете на диоксид NO2) , а в мощных энергетических котлах может достигать 1,5 г/м3 . В дымовых газах небольших отопительных и промышленных котлов содержится меньше оксида азота ( 0,1-0,5г/м3), но дымовые трубы, которыми оснащают такие котельные, имеют обычно столь малую высоту, что приземная концентрация Nox часто превышают санитарные нормы. В отличие от молекулярного азота N2, который составляет почти 79% атмосферного воздуха, оксиды азота содержатся в атмосфере в значительно меньших количествах, но, несмотря на это, роль их в жизни человека весьма существенна.
Оксиды азота обычно классифицируются в зависимости от степени окисления азота. При соединении азота с кислородом по мере увеличения его валентности образуются гелиооксид N2О, оксид NO, азотистый ангидрид N2O3,
диоксид NO2, тетраоксид диазота N2O4 и азотный ангидрид N2O5.В проблеме охраны атмосферного воздуха наибольшее практическое значение имеют оксид и диоксид азота, сумму которых часто обозначают как NOX . Другие оксиды азота не считаются важным с биологической точки зрения или их присутствие в земной атмосфере ничтожно мало вследствие неустойчивости этих соединений.
Оксид азота NO – малоактивный в химическом отношении бесцветный газ, лишенный запаха и плохо растворимый в воде. При комнатной температуре и атмосферном давлении растворимость NO составляет лишь 0.047 г/см3, с повышением температуры растворимость падает. Диоксид азота NO2,более активен, он красно-бурого цвета и отличается резким запахом.
Главной проблемой, возникающей в результате присутствия в воздухе оксидов азота, является их токсическое воздействие на здоровье людей. Установлено , что даже кратковременное (до 1 ч) воздействие диоксида азота в концентрации 47-140 мг/м3 может вызвать воспаление легких и бронхит, а при концентрации 560-940 мг/м3 велика вероятность летального исхода в результате отека легких.
Повышенные концентрации оксидов азота в воздухе воздействуют не только на людей, но и на растительный мир ; по данным американских исследователей, при концентрациях от 280 до 560 мкг/м3 наблюдались повреждения томатов и бобовых.
Основным источником выброса оксидов азота в атмосферу является сжигание ископаемого топлива стационарными установками при производстве теплоты и электроэнергии. Большую роль, особенно в городах , играют также выбросы автотранспорта и некоторых промышленных предприятий ( заводов по производству азотной кислоты, взрывчатых веществ и т.д. ).
Важнейшей сферой борьбы с загрязнением атмосферы оксидами азота является энергетика.
Для оценки перспектив загрязнения атмосферы токсичными продуктами сгорания органического топлива важно правильно оценить ожидаемый прирост потребления первичной энергии, а также рост потребления тех энергоносителей. Таковыми являются нефть и нефтепродукты , используемые для сжигания , природный газ , а так же твердые топлива .
На выходе из дымовой трубы состав окислов азота почти не изменяется по сравнению с топочной камерой, т.е состоит из NO,и только в атмосфере может происходить процесс его постепенного доокисления .
Наибольший выход окислов азота характерен для высококалорийных сортов топлива ( мазут, каменный уголь, природный газ ).
Из анализа влияния основных факторов на образование окислов азота выступают методы их подавления в топочной камере.
При внедрении мероприятий, рассчитанных на снижение образования оксидов азота, приходится учитывать, что некоторые из них могут увеличить содержание других, не менее опасных загрязнителей. В частности при некоторых режимах сжигания газа образуются канцерогенные продукты: бензаперен и другие полициклические ароматические углеводороды. Концентрация бензаперена в дымовых газах при полной нагрузке газовых котлов составляет 1-10 мкг/100м3, причем нижнее значение соответствует крупным энергетическим котлам, а верхнее- отопительным котлам. Если учесть, что среднесуточная предельно-допустимая концентрация бензаперена в воздухе равна 0,001 мкг/м3, то становится ясным, что при нормальных условиях работы котла токсичность дымовых газов определяется в основном содержанием в них оксидов азота, и только при частичных нагрузках, главным образом, на отопительных блоках, или при нарушении нормальных режимов горения суммарная относительная токсичность продуктов неполного сгорания может оказаться сопоставимой с токсичностью оксидов азота.
Простейшим мероприятием, снижающим максимальный уровень температуры в топке, является уменьшение нагрузки котла. Многочисленные измерения, проведенные на котлах различной мощности с горелками разных конструкций, показали, что зависимость концентрации Nox от нагрузки котла близка к степенной. Снижение нагрузки котла сопровождается снижением температур в топке за счет уменьшения объёмного тепловыделения и температуры подогрева воздуха. Снижение выходных скоростей в горелках также оказывает определенное влияние на образование Nox.
Понятно, что снижение нагрузки котла нельзя рассматривать в качестве мероприятия по снижению выбросов оксидов азота (за исключением, может быть, случаев особо не благоприятных метеорологических условий, продолжительность которых довольно ограничена), однако влияния теплового напряжения зоны активного горения на образование оксидов азота может быть использовано конструкторами при создании новых котлов на природном газе.
Еще одним простейшим средством снижения температурного уровня, а следовательно, и концентрации оксидов азота в дымовых газах является осуществление рециркуляции дымовых газов. При сжигании газа, когда отсутствуют слабозависящие от температуры топливные NOx ,эффективность рециркуляции газов весьма велика.
При рециркуляции дымовых газов через горелки уменьшается также концентрация кислорода, что приводит к дополнительному снижению образования NOx . Если же подавать газы рециркуляции через шлицы в под топки, как это иногда делается для регулирования температуры промежуточного перегрева при снижении нагрузки, то их влияние на выбросы оксидов азота будет незначительно.
Дальнейшее увеличение рециркуляции уже менее эффективно. Ограниченность применения этого метода снижения выбросов оксидов азота объясняется тем, что рециркуляция дымовых газов снижает экономические показатели (возрастают потери с уходящими газами и расход электроэнергии на собственные нужды). В тех случаях, когда рециркуляцию газов необходимо производить на уже действующих котлах, появляются дополнительные трудности, связанные с установкой дымососа рециркуляции и коробов для подачи дымовых газов к горелкам.
Еще одним недостатком этого метода являются опасное возрастание концентрации бензапирена по мере увеличения рециркуляции дымовых газов.
Снижение максимальной температуры в топочной камере, а следовательно, и концентрации оксидов азота, можно обеспечить увеличением теплоотвода, например за счет установки двусветного экрана или других тепловоспринимающих поверхностей нагрева в зоне интенсивного горения.
Снижение температурного уровня за счет ввода влаги в зону горения является одним из возможных путей сокращения выбросов оксидов азота при сжигании природного газа. При этом эффективности метода зависит не только от количества вводимой в топку влаги, но и от способа ввода, а также от коэффициента избытка воздуха в топочной камере.
Как и в случае сжигания угля или мазута, простейшим методом уменьшения концентрации оксидов азота в продуктах сгорания газа является снижение избытка воздуха, подаваемого через горелки . Сказанное относится только к тому диапазону избытков воздуха, который применяется обычно в энергетических котлах (1,1-1,2) . В случае более высоких a снижение температуры в топочной камере оказывает большее влияние на образование оксидов азота и в результате увеличение избытка воздуха сверх a=1,2 снижает концентрацию NOx в дымовых газах.
Снижение избытка воздуха возможно лишь до тех пор, пока это не приводит к интенсивному росту продуктов неполного сгорания, когда не только уменьшается экономичность топочного процесса, но и создается опасность загрязнения атмосферы другими веществами, не менее вредными, чем оксиды азота.
При многоярусном размещении горелок эффективным средством снижения выбросов оксида азота может оказаться нестехиометрическое сжигание.
Другим методом нестехиометрического сжигания является ступенчатое сжигание. При этом на котлах для подачи воздуха, необходимого для полного сгорания, как правило, устанавливают отдельные горелки (обычно-верхнего яруса), если через остальные горелки удается подать количество топлива, необходимое для работы котла с номинальной нагрузкой.
Расчет выбросов оксидов азота
В условиях высокотемпературного горения топлива азот воздуха становится реакционноспособным и, соединяясь с кислородом, образует оксиды. Кроме того, образование оксидов азота в процессах горения может происходить за счет разложения и окисления азотосодержащих соединений, входящих в состав топлива. Всего азот с кислородом может образовывать шесть соединений:
N2O,NO,N2O3,NO2,N2O4,N2O5.
Наиболее устойчивым оксидом является NO2 ,в который могут переходить и другие оксиды азота, поэтому установленные нормы ПДК даются для суммы всех оксидов в пересчете на NO2 . В дымовых газах котлоагрегатов оксиды азота обычно состоят на 95-99% из оксида азота, 1-5% составляет диоксид азота, доля других оксидов азота пренебрежимо мала.
Массовый выброс оксидов азота в пересчете на NO2(т/г, г/с) в атмосферу с дымовыми газами котла вычисляется по формуле :
MNO2=0,34×10-7kBQрн(1-q/100)12
где1- коэффициент, учитывающий влияние на выход оксидов азота качества сжигаемого топлива (содержание Nг ), принимается равным 0,8;
k- коэффициент, характеризующий выход оксидов азота ,кг/т условного топлива;
2- коэффициент, учитывающий конструкцию горелок (для вихревых горелок 2=1);
Коэффициент k для котлов паропроизводительностью менее 70 т/ч при сжигании мазута и газа определяется по формуле:
k=3,5Dф/70,
где Dф -фактическая паропроизводительность котла;
Принимается Dф=0,95D ,
где D -номинальная паропроизводительность котла
Тогда [2]:
k=3,5×,95×20/70=0,95
MДКВР-20/13NO2=0,34×10-7×9×386×7346×372× г/с
Расчет выбросов оксидов углерода.В недостаточно совершенных топочных устройствах или при неналаженном режиме сжигания топлива часть его горючих не окисляется до конечных продуктов, а образуются продукты неполного сгорания. Наиболее вероятным продуктом неполного сгорания всех видов топлива является окись углерода CO.
Массовый выброс оксидов углерода (г/с) в атмосферу с дымовыми газами котла вычисляется по формуле
MCO=0,001CCOB(1-q4/100)
Где CCO- выход оксида углерода при сжигании топлива (кг/тыс.м3)
CCO=q3RQрн/1013
гдеq3- потери теплоты от химической неполноты сгорания топлива, 0,5 %;
R- коэффициент, учитывающий долю потери теплоты вследствие химической неполноты сгорания топлива, обусловленную содержанием в продуктах неполного сгорания оксида углерода. Для газа R=0,5;
Qрн- теплота сгорания натурального топлива ,кдж/м3 ;
q4- потери теплоты от механической неполноты сгорания топлива, %
Значения q3,q4принимаем по данным укрупнённого расчета котлоагрегата.
CCO=0,5×0,5×37346/1013=9,21 кг/тысм3
MДКВР-20/13CO=0,001×21×386=0,003 г/с;
Определение высоты трубы производится по формуле
Где pп - поправочный коэффициент для расчета многоствольных труб, зависящий от числа стволов в трубе , отношения расстояния между ближайшими стволами на выходе к диаметру ствола (на выходе) и от угла наклона выходного участка выходного участка ствола к вертикальной оси . Для одноствольных труб pп =1,0.
m - коэффициент, учитывающий условия выхода из устья трубы, значения которого принимаются в зависимости от скорости W0.
A- коэффициент, зависящий от температурной стратификации атмосферы град1/3, (для Республики Беларусь A =160)
M- суммарный выброс NO2 из всех труб котельной, г/с
F- безразмерный коэффициент, учитывающий влияние скорости осаждения примеси в атмосфере: для газообразных веществ и мелкодисперсных аэрозолей, скорость упорядоченного оседания которых практически равно нулю , F =1;
ПДК - предельно допустимая концентрация в атмосфере NO2, SO2 или золы .( По СНиП для NO2 (ПДК) равна 0,085 мг/м3)
Сф- фоновая концентрация района, устанавливаемая органами санинспекции района;
z- число дымовых труб ;
V- суммарный объём дымовых газов;
t- разность температур выбрасываемых газов и воздуха (последняя принимается по средней температуре самого жаркого месяца в полдень).
Т.к рассчитываемый котел работает на газе, то выбросов SO2 нет, расчет ведется по NO2.
Фоновую концентрацию принимаем в размере 20% от ПДК NO2. Таким образом
Сф=0,2×0,085=0,017 мг/м3.
Объем дымовых газов принимается по данным расчета котлоагрегата ДКВР-20/13. При сжигании объём дымовых газов выходящих за 1с из котла составит V=5,46 м3/с;
Приводя полученную цифру к нормальным условиям получим:
VДКВР-10/13 = Vк×(tух+273)/273=5,46 × (140+273)/273=6,26 м3/с.
Среднюю температуру самого жаркого месяца в полдень принимаем 25 ОС.
Высота трубы составит:
Принимается ближайшая большая труба стандартной высоты 30 м .
Диаметр устья дымовой трубы:
,
где :
VТР – объёмный расход продуктов сгорания через трубу при расчётной температуре их в выходном сечении,
м3/с; VТР = VД =5,46 м3/с;
wВЫХ – скорость продуктов сгорания на выходе из дымовой трубы, принимается равной 25 м/с [1].
По СНиП II-35-76 выбирается кирпичная дымовая труба диаметром выходного сечения 1, 2 м.
Охрана труда и экология
Паровые и водогрейные котлы должны удовлетворять нормам и требованиям по обеспечению безопасной их эксплуатации., которые изложены в соответствующих Правилах устройства и безопасной эксплуатации паровых и водогрейных котлов.
Конструкция котла и его основных элементов должна обеспечивать надежность и безопасность эксплуатации на расчетных параметрах в течение назначенного срока службы, а также возможность технического освидетельствования, очистки, промывки, ремонта и эксплуатационного контроля металла, фасонных и литых деталей, сварных соединений.
Конструкция котла должна обеспечивать возможность равномерного прогрева и свободного теплового расширения его элементов при растопке и нормальном режиме работы.
Каждый котел с камерным сжиганием топлива должен быть снабжен взрывными предохранительными устройствами, которые должны быть размещены и устроены так, чтобы при их срабатывании исключалось травмирование людей. Газоходы, через которые подаются отходящие газы, должны иметь взрывные клапаны такой конструкции, которая обеспечит безопасность обслуживающего персонала при их срабатывании. Горелочные устройства должны быть безопасны и экономичны. Должны обеспечивать надежное воспламенение и устойчивое горение топлива без отрыва и проскока пламени за пределы топки в заданном диапазоне режимов работы, не допускать выпадения капель жидкого топлива на под и стенки.
Изготовление, монтаж, ремонт, а также реконструкция, модернизация котлов и их элементов должны выполнятся специализированными предприятиями и организациями, располагающими техническими требованиями, необходимыми для качественного выполнения работ. При изготовлении, монтаже и ремонте должна применяться система контроля качества, которая гарантировала бы выявление недопустимых дефектов, ее высокое качество и надежность в эксплуатации. Контроль качества сварки и сварных соединений включает:
1. проверку уровня квалификации и аттестации персонала;
2. проверку сборочно – сварочного, контрольного оборудования, аппаратуры, приборов и инструментов;
3. контроль качества основных материалов;
4. контроль качества сварочных материалов и материалов для дефектоскопии;
5. операционный контроль технологии сварки;
6. неразрушающий контроль качества сварных соединений;
7. разрушающий контроль;
8. контроль исправления дефектов.
Основными методами неразрушающего контроля металла и сварных соединений котлов являются:
- визуальный и визуально – оптический;
- радиографический;
- ультразвуковой;
- капиллярный;
- прогонка металлического шара;
- гидравлическое испытание.
При разрушающем контроле должны проводиться испытания механических свойств.
Для управления работой котлов и обеспечения режимов эксплуатации они должны быть оснащены:
1. устройствами, предохраняющими от повышения давления (предохранительными устройствами);
2. указателями уровня воды (для паровых котлов);
3. манометрами;
4. приборами для измерения температуры среды;
5. запорной и регулирующей арматурой;
6. приборами безопасности.
Каждый элемент котла, внутренний объем которого ограничен запорной арматурой, должен быть защищен предохранительными устройствами, автоматически предотвращающими повышение давления сверх допустимого путем выпуска рабочей среды в атмосферу.
В качестве предохранительных устройств допускается применять:
1. рычажно – грузовые предохранительные клапаны прямого действия исключая их использование в транспортабельных котельных;
2. пружинные предохранительные клапаны прямого действия;
3. выкидные предохранительные устройства (гидрозатворы).
Манометры, устанавливаемые на котлах и трубопроводах в пределах котельной, должны иметь класс точности не ниже 2,5.
У водогрейных котлов для измерения температуры воды устанавливают термометры при входе воды в котел и на выходе из него. При наличии в котельной двух и более котлов термометры, кроме того размещают на общих подающем и обратном трубопроводах.
Арматура, установленная на котлах и трубопроводах, должна иметь маркировку с указанием:
1. условного прохода;
2. условного или рабочего давления и температуры среды ;
3. направления потока среды.
Каждый котел оборудуют следующими трубопроводами :
1. для продувки котла и спуска воды при остановке котла ;
2. для удаления воздуха из котла при растопке ;
3. для удаления конденсата из паропроводов ;
4. для отбора проб воды и пара ;
5. для ввода корректирующих (моющих) реагентов при эксплуатации (химической очистке) котла.
Гидравлическому испытанию подлежат все котлы и их элементы после изготовления. Котлы, изготовление которых заканчивается на месте установки, транспортируемые на место монтажа отдельными деталями, элементами или блоками, подвергаются гидравлическому испытанию на месте монтажа.
Гидравлическому испытанию с целью проверки плотности и прочности всех элементов котла, а также всех сварных и других соединений подлежат :
1. все трубные, сварные, литые, фасонные и другие элементы и детали, а также арматура, если они не прошли гидравлическое испытание на местах их изготовления; гидравлическое испытание не является обязательным для перечисленных элементов и деталей, если они подвергаются стопроцентному контролю ультразвуком или иными равноценными неразрушающими методами дефектоскопии ;
2. элементы котлов в собранном виде ;
3. котлы, пароперегреватели и экономайзеры после окончания их изготовления или монтажа.
Пробное давление при гидравлическом испытании должно составлять 1,5 рабочего давления, но быть не менее 0,2 МПа (2 кг*с/см2) . Котлы, на которые имеются ГОСТы, должны испытываться давлением, указанным в этих ГОСТах.
Для гидравлических испытаний должна применяться вода с температурой не ниже 278 К (5 0С) и не выше 313 К (40 0С).
Котел считается выдержавшим гидравлическое испытание, если не обнаружено:
1. признаков разрыва ;
2. течи, слезок и потения на основном металле и в сварных соединениях;
3. остаточных деформаций.
Время выдержки котла под пробным давлением должно быть не менее 10 мин. Падение давления во время испытания не допускается.
Устройство помещений и чердачных перекрытий над котлами не допускается. Место установки котлов внутри производственных помещений должно быть отделено от остальной части помещения несгораемыми перегородками по всей высоте котла, но не менее 2 м, с устройством дверей. Для обслуживающего персонала в зданиях котельной должны быть оборудованы бытовые и служебные помещения в соответствии с санитарными нормами. Выходные двери из помещения котельной должны открываться наружу.
Помещения котельной должны быть обеспечены достаточным естественным светом, а в ночное время – электрическим освещением. Помимо рабочего освещения в котельной должно быть аварийное электрическое освещение.
Помещение котельной, котлы и все оборудование следует содержать в исправном состоянии и чистоте. Проходы в котельном помещении и выходы из него должны быть всегда свободными.
Водно – химический режим должен обеспечивать работу котла и питательного тракта без повреждения их элементов в следствие отложений накипи и шлама, повышения относительной щелочности котловой воды до опасных пределов или в результате коррозии металла.
Для жидкостных котлов должно быть установлено не менее двух циркуляционных насосов с электрическим приводом, из которых один должен быть резервным. Подача и напор циркуляционных насосов должны выбираться так, чтобы была обеспечена необходимая скорость циркуляции теплоносителя в котле.
Жидкостные котлы должны быть оборудованы линией рециркуляции с автоматическим устройством, обеспечивающим поддержание постоянного расхода теплоносителя через котлы при частичном или полном отключении потребителя.
Для восполнения потерь циркулирующего в системе теплоносителя должно быть предусмотрено устройство для обеспечения подпитки системы.
ОПИСАНИЕ ТЕПЛОВОЙ СХЕМЫ КОТЕЛЬНОЙ
Для покрытия чисто паровых нагрузок или для отпуска незначительного количества тепловой энергии в виде горячей воды от тепловых источников, предназначенных для снабжения потребителей паром, устанавливаются паровые котлы низкого давления.
Основная часть пара отпускается на производственные нужды из паропроводов котельной, часть редуцированного и охлажденного пара используется в пароводяных подогревателях сетевой воды, откуда направляется в закрытую систему тепловых сетей. Конденсат от внешних потребителей собирается в конденсатные баки и перекачивается конденсатными насосами в деаэраторы питательной воды. Конденсат от пароводяных подогревателей, установленных в котельной, подается прямо в деаэраторы. Кроме того, имеется трубопровод для возможности слива его в конденсатные баки.
Основной целью расчета любой тепловой схемы котельной является выбор основного и вспомогательного оборудования с определением исходных данных для последующих технико-экономических расчетов.
Насос сырой воды подает воду в охладитель продувочной воды, где она нагревается за счет теплоты продувочной воды. Затем сырая вода подогревается до 20-30 оС в пароводяном подогревателе сырой воды и направляется в химводоочистку. Химически очищенная вода направляется в охладитель деаэрированой воды и подогревается до определенной температуры. Дальнейший подогрев химически очищенной воды осуществляется в подогревателе паром. Перед поступлением в головку деаэратора часть химически очищенной воды проходит через охладитель выпара деаэратора.
Подогрев сетевой воды производится паром в последовательно включенных двух сетевых подогревателях. Конденсат от всех подогревателей направляется в головку деаэратора, в которую также поступает конденсат, возвращаемый внешними потребителями пара.
Подогрев воды в атмосферном деаэраторе производится паром от котлов и паром из расширителя непрерывной продувки. Непрерывная продувка от котлов используется в расширителе, где котловая вода вследствие снижения давления частично испаряется.
В котельных с паровыми котлами независимо от тепловой схемы использование теплоты непрерывной продувки котлов является обязательным. Использованная в охладителе продувочная вода сбрасывается в продувочный колодец (барботер).
Деаэрированная вода с температурой около 104 оС питательным насосом подается в паровые котлы. Подпиточная вода для системы теплоснабжения забирается из того же деаэратора, охлаждаясь в охладителе деаэрированной воды до 70 оС перед поступлением к подпиточному насосу. Использование общего деаэратора для приготовления питательной и подпиточной воды возможно только для закрытых систем теплоснабжения ввиду малого расхода подпиточной воды в них.
Для технологических потребителей, использующих пар более низкого давления по сравнению с вырабатываемым котлоагрегатами, и для подогревателей собственных нужд в тепловых схемах котельных предусматривается редукционная установка для снижения давления пара (РУ) или редукционно-охладительная установка для снижения давления и температуры пара (РОУ) [1].
Температура снижается за счет испарения поданной в РОУ питательной воды, которая распыляется за счет снижения давления с 13 - 14 кгс/см2 до 6 кгс/см2.
Поскольку в паровой котельной Речицкого пивзавода постоянно в работе находится только один из трех установленных котлов, то для всех трёх агрегатов установлен один общий центробежный питательный электронасос, такой же насос находится в резерве. Вода в паровые котлы может также подаваться одним поршневым насосом с паровым приводом.
Фактические напоры теплоносителей определяются исходя из рабочего давления пара в котлах и расчетов гидравлического сопротивления системы трубопроводов, арматуры и теплообменников.
Расчет тепловой схемы котельной с паровыми котлами выполняется для трех режимов: максимально-зимнего; наиболее холодного месяца и летнего.
РАСЧЕТ ТЕПЛОВОЙ СХЕМЫ КОТЕЛЬНОЙ
Расположение котельной: г. Речица
Таблица 3.1
Наименование | Обозна- чение | Обосно- вание | Режимы* | |||
1 | 2 | 3 | ||||
1 | 2 | 3 | 4 | 5 | 6 | |
1. Расход пара на технологические нужды, т/ч P=0,6 МПа, h = 2957 кДж/кг | Dт | задано | 16 | 16 | 17,9 | |
3. Расчетная мощность отопления и вентиляции ПП, МВт | Qов | задано | 6,3 | 4,249 | 0 | |
4. Расчетная мощность горячего водоснабжения ПП, МВт | Qгв | задано | 1,000 | 1,000 | 0,8000 | |
5. Расчетная температура наружного воздуха на отопление,С | tно | СниП | -25 | -11 | -- | |
6. Температура воздуха внутри помещения, °С | tвн | СниП | 18 | 18 | ||
7. Температура сетевой воды в пря- мом трубопроводе, °С | t1 | задано | 150 | 111 | 120 | |
9. Температура горячей воды в месте водоразбора, °С | tгв | СниП | 55 | 55 | 55 | |
10. Доля возврата конденсата от внешних потребителей | β | задано | 0,7 | 0,7 | 0,7 | |
11. Энтальпия свежего пара, кДж/кг(2,2Мпа) | h'роу | табл. | 2934 | 2934 | 2934 | |
12.Энтальпия редуцированного пара, кДж/кг(1,4Мпа) | h»роу | табл. | 2830 | 2830 | 2830 | |
1 | 2 | 3 | 4 | 5 | 6 | |
13. Температура сырой воды, °С | tсв | принята | 5 | 5 | 11 | |
14. Температура питательной воды, °С | tпв | принята | 104 | 104 | 104 | |
15. Энтальпия питательной воды, кДж/кг | hпв | табл. | 437 | 437 | 437 | |
16. Непрерывная продувка котлов,% | Рпр | принята | 3 | 3 | 3 | |
17. Энтальпия котловой воды, кДж/кг | hкв | табл. | 810 | 810 | 810 | |
18. Энтальпия пара, выходящего из расширителя непрерывной про дувки, кДж/кг | h"расш | табл. | 2680 | 2680 | 2680 | |
19.Температура ХОВ перед охлади- телем деаэрированной воды, °С | t'хов | принята | 20 | 20 | 20 | |
20. Температура подпиточной воды, °С | tпод | принята | 70 | 70 | 70 | |
21. Энтальпия подпиточной воды, кДж/кг | hпод | табл. | 293,3 | 293,3 | 293,3 | |
22. Температура конденсата возвра- щаемого потребителями, °С | tк | задано | 80 | 80 | 80 | |
23. Энтальпия конденсата, кДж/кг | hк | табл. | 336 | 336 | 336 | |
24. Температура воды после охлади теля непрерывной продувки, °С | tпр | принята | 50 | 50 | 50 | |
25. Энтальпия конденсата редуциро- ванного пара , кДж/кг | hкроу | табл. | 790 | 790 | 790 | |
26. КПД подогревателей | принято | 0,98 | 0,98 | 0,98 | ||
27. Потери пара в цикле котельной,% | kк | принято | 3 | 3 | 3 | |
28. Коэф-т покрытия потерь котель ной, % | kп | принято | 1 | 1 | 3 | |
29.Степень сухости пара, | x | принято | 0,98 | 0,98 | 0,98 | |
30.К-т расхода пара на собственные нужды ,% | kсн | принято | 9,00 | 9,00 | 9,20 | |
31.Потери воды в системе тепло снабжения,% | Kтс | принято | 3 | 3 | 3 | |
32.Коэффициент непрерывной продувки,% | kпр | принято | 3 | 3 | 3 | |
33.Коэф-т расхода сырой воды на нужды ХВО | kхв | принято | 1,25 | 1,25 | 1,25 | |
* 1-- максимально зимний режим
2-- режим наиболее холодного месяца
3-- летний режим
Коэффициент снижения расхода теплоты на отопление и вентиляцию для 2 режима
,
где - расчетная температура наружного воздуха на отопление для 2 режима,(табл. 2.1)
Температура сетевой воды на нужды отопления и вентиляции в подающей линии для 2 режима
t1 = 18 + 64,5× kов0,8 +67,5× kов , оС
t1 = 18 + 64,5·0,70,8 + 67,5·0,7 = 111 °С
Температура обратной сетевой воды после систем отопления и вентиляции
t2 = t1 – 90×kов ,оС
t2 = 111 - 90·0,7 = 50 °С
Расход воды в подающей линии для нужд горячего водоснабжения
, т/ч
1. т/ч
2. т/ч
3. т/ч
Расход сетевой воды на отопление и вентиляцию
, т/ч
1. т/ч
2. т/ч
3. т/ч
Расход сетевой воды
G = Gов + Gгв , т/ч
1. G = 67,7 + 10,7500 = 78,5 т/ч
2. G = 59,9 + 14,0984 = 74,0 т/ч
3. G = 0,0 + 9,8286 = 9,8 т/ч
Расход пара на подогреватель сетевой воды
, т/ч
1. , т/ч
2. , т/ч
3. , т/ч
Утечка воды в тепловых сетях
Gут = 0,01×kтс× Gов , т/ч
где kтс - потери воды в системе теплоснабжения, принимаются равными
1,5-3% [табл. 3.1]
1. Gут = 0,01×3×67,7 = 2,0 т/ч
2. Gут = 0,01×3× 59,9 = 1,8 т/ч
3. Gут = 0,01×3× 0 = 0,0т/ч
Количество подпиточной воды
Gподп = Gгв + Gут ,т/ч
1.Gподп = 10,75 + 2 = 12,78 т/ч
2.Gподп = 14,0984 + 1,8 = 15,90 т/ч
3.Gподп = 9,8286 + 0 = 9,83 т/ч
Расход редуцированного пара внешним потребителем
Dllроу = Dт + Dпсв ,т/ч
1.D"роу = 16 + 10,78 = 26,78 т/ч
2.D"роу = 16 + 7,76 = 23,76 т/ч
3. D"роу = 17,9 + 1,18 = 19,08 т/ч
Суммарный расход свежего пара внешним потребителем
, т/ч
1. , т/ч
2. , т/ч
3. , т/ч
Количество воды, впрыскиваемой в РОУ
1. , т/ч
2. , т/ч
3. , т/ч
Расход пара на собственные нужды котельной
Dlсн = 0,01×kсн×Dвн , т/ч
где kсн - коэффициент расхода пара на собственные нужды котельной ,%.
Принимаем в интервале 5 – 10 %
1. D'сн = 0,01×9×25,66 = 2,31 т/ч
2. D'сн = 0,01×9×22,77 = 2,05 т/ч
3. D'сн = 0,01×9,2×18,29 = 1,68 т/ч
Расход пара на покрытие потерь котельной
Dп = 0,01×kп× (Dвн + Dlсн), т/ч
где kп - коэффициент покрытия потерь котельной, % .
Принимаем в интервале 1 – 3 % [табл. 3.1]
1. Dп = 0,01×1×( 25,66 + 2,31) = 0,28 т/ч
2. Dп = 0,01×1×( 22,77 + 2,05) = 0,25 т/ч
3. Dп = 0,01×3×( 18,29 + 1,68) = 0,60 т/ч
Суммарный расход пара на собственные нужды и потери
Dсн = Dlсн + Dп , т/ч
1. Dсн = 2,31 + 0,28 = 2,59 т/ч
2. Dсн = 2,05 + 0,25 = 2,30 т/ч
3. Dсн = 1,68 + 0,6 = 2,28 т/ч
Суммарная паропроизводительность котельной
D = Dсн + Dвн , т/ч
1. D = 2,59 + 25,66 =28,25 т/ч
2. D = 2,3 + 22,77 = 25,07 т/ч
3. D = 2,28 + 18,29 = 20,57 т/ч
Потери конденсата в оборудовании внешних потребителей и внутри котельной
Gпотк = (1 -b )×Dn + 0,01×kк×D , т/ч
где b - доля возврата конденсата [табл. 3.1]
kк - потери конденсата в цикле котельной
,% [табл.3.1]1.Gпотк = (1 – 0,7)ּ16 + 0,01ּ3ּ28,25 = 5,65 т/ч
2.Gпотк = (1 - 0,7)ּ16 + 0,01ּ3ּ25,07 = 5,55 т/ч
3.Gпотк = (1 - 0,7)ּ17,9 + 0,01ּ3ּ20,57 = 5,99т/ч
Расход химочищенной воды на подпитку теплосетей
Gхов = Gпотк + Gподп , т/ч
1.Gхов = 5,65 +12,78 = 18,43 т/ч
2.Gхов = 5,55 +15,9 = 21,45 т/ч
3.Gхов = 5,99 + 9,83 = 15,82 т/ч
Расход сырой воды
Gсв = kхвּGхов, т/ч
kхв - коэффициент , учитывающий расход сырой воды на нужды хим
водоочистки , принимаем в интервале 1,1 - 1,25 [табл.3.1]
1. Gсв = 1,25ּ18,43 = 23,04 т/ч
2. Gсв = 1,25ּ21,45 = 26,81 т/ч
3. Gсв = 1,25ּ15,82 = 19,78 т/ч
Количество котловой воды , поступающей с непрерывной продувкой в сепаратор
Gпр = 0,01ּPпрּD
где Рпр - коэффициент непрерывной продувки, %, принимаем в интервале от 2 до 5 % [табл. 3.1]
1. Gпр = 0,01ּ3ּ28,25 = 0,85 т/ч
2. Gпр = 0,01ּ3ּ25,07 = 0,75т/ч
3. Gпр = 0,01ּ3ּ20,57 = 0,62 т/ч
Количество пара, образовавшегося в расширителе непрерывной продувки
, т/ч
Где χ - степень сухости пара. Принимаем χ = 0,98
h'расш - энтальпия отсепарированной поточной воды , кДж/кг.
Принимаем по табл. 3.1
h"расш - энтальпия пара, выходящего из сепаратора непрерывной про
дувки , кДж/кг [табл.3.1]
1. т/ч
2. т/ч
3. т/ч
Количество воды на выходе из расширителя непрерывной продувкиGрасш = Gпр – Dрасш , т/ч
1. Gрасш = 0,85 - 0,14 = 0,71 т/ч
2. Gрасш = 0,75 - 0,13 = 0,62 т/ч
3. Gрасш = 0,62 - 0,11 = 0,51 т/ч
Температура сырой воды после охладителя непрерывной продувки
, т/ч
где h"пр - энтальпия продувочной воды с t = 50 оC
h"пр =50ּ4,2 = 210 кДж/кг
1. °C
2. °C
3. °C
Расход пара на подогреватель сырой воды
, т/ч
где h'св - энтальпия воды при температуре t'св
1. h'св = 4,2ּ7 = 29,4 кДж/кг
2. h'св = 4,2ּ6 = 25,2 кДж/кг
3. h'св = 4,2ּ6 = 25,2 кДж/кг
h'хов - энтальпия химически очищенной воды при t'хов = 20 оС
1. h'хов = 4,2ּ20 =84,0 кДж/кг
2. h'хов = 4,2ּ20 =84,0 кДж/кг
3. h'хов = 4,2ּ20 =84,0 кДж/кг
1. т/ч
2. т/ч
3. т/ч
Температура химочищенной воды после охладителя подпиточной воды
, оС
1 °C
2 °C
3 °C
Расход пара на подогрев химочищенной воды в подогревателе перед деаэратором
, т/ч
где h"хов - энтальпия химочищенной воды при t"хов, равной
h"хов = 4,2ּt"хов , кДж/кг
1. h"хов = 4,2ּ 43,1 = 181 кДж/кг
2. h"хов = 4,2ּ 59,2 = 248,6 кДж/кг
3. h"хов = 4,2ּ52,9= 222,2 кДж/кг
1. т/ч
2. т/ч
3. т/ч
Суммарное количество воды и пара , поступающих в деаэратор , без учёта греющего пара
Gд = Gхов + βּDт +Dхов + Dсв + Dпсв + Dрасш , т/ч
1. Gд = 18,43 + 0,7ּ16 + 1,43 + 0,62 + 10,78 + 0,14 = 42,60 т/ч
2. Gд = 21,45 + 0,7ּ16 + 0,31+0,77 + 7,76 + 0,13 = 41,62 т/ч
3. Gд = 15,82 + 0,7ּ16 + 0,29 + 0,57 + 1,18 + 0,11 = 29,17 т/ч
Средняя температура воды в деаэраторе без учёта греющего пара
, оС
1. оС
2.оС
3. оС
Расход греющего пара на деаэратор
, т/ч
1. т/ч
2. т/ч
3. т/ч
Расход редуцированного пара на собственные нужды котельной
Dснроу = Dд + Dхов + Dсв , т/ч
1. Dснроу = 1,3 +1,43 + 0,62 = 3,35 т/ч
2. Dснроу = 1,46 + 0,31 + 0,77 = 2,54 т/ч
3. Dснроу = 0,79 + 0,29 + 0,57 = 1,65 т/ч
Расход свежего пара на собственные нужды котельной
, т/ч
1. т/ч
2. т/ч
3. т/ч
Действительная паропроизводительность котельной
Dк = Dвн + Dсн +0,01ּ kп ּ(Dвн + Dсн) , т/ч
1. Dк = 25,66 + 3,21 + 0,01ּ 1ּ(25,66 + 3,21) = 28,93 т/ч
2. Dк = 22,77 + 2,43 + 0,01ּ 1 ּ(22,77 + 2,43) = 25,25 т/ч
3. Dк = 18,29 + 1,58 + 0,01ּ 3 ּ(18,29 + 1,58) = 19,99 т/ч
Невязка:
, %
1. %
2. %
3. %
Моделирование тепловой схемы котельной закончено, т.к. небаланс с предварительно принятой паропроизводительностью котельной меньше 3%.
АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ КОТЕЛЬНОГО АГРЕГАТА
Газовый тракт
Присос воздуха на участке газохода между котлом и дымососом:
Δαд = 0,05
Температура дымовых газов перед дымососом:
оС
Плотность дымовых газов за топкой: a = 1,1
кг/м3
Плотность дымовых газов в конвективном пучке:
кг/м3
За установкой (перед дымосом):
кг/м3
У дымовой трубы:
кг/м3
Действительный часовой объем дымовых газов:
,
где a11 и q11 – соответственно коэффициент избытка воздуха и температура в конце поверхности нагрева, предшествующей рассматриваемому соседнему газоходу;
Вр = 1390,116 кг/ч
Voг = VoN2 + VRO2 +VoH2O = 7.84+1.06+2.22=11.12 м3/м3
В конвективном пучке:
м3/ч
За котлом:
м3/ч
За установкой:
м3/ч
У дымовой трубы:
м3/ч
Паровой котел:
Сопротивление топки DhT = 30 Па
Сопротивление котла:
Dhк = Dhп+ Dhм
Сопротивление пучка труб:
Dhn = Dhдин×xк
Динамическое сопротивление при средней скорости и плотности:
м/с
Средняя плотность:
rср = 0,378
Па
xк – коэффициент сопротивления коридорного пучка:
xк = xо×z2
где z2 – число труб по глубине пучка: z2 = 43
xо – коэффициент сопротивления данного ряда пучка:
xо = xгр×Cs×CRE
где xгр – графический коэффициент, зависящий от скорости потока, диаметра труб и средней температуры потока; tср = 706 оС
При wср = 26,4 м/с и дтрубой 51´2,5 мм xгр = 0,420
Сs = 0,37 СRE = 1,26
x0 = 0,420×0,37×1,26=0,193
xк = 0,193×4,3 =8,299
Dhn = 131,7×8,299 = 1092,9 Па
Значение сопротивления конвективного газохода (поворот на 90о)
xо =0,5
Dhм = xпов×Dhдин = 0,5×131,7=65,85 Па
Полное сопротивление:
Dhк = 1092,9+65,85=1158,7 Па
0 комментариев