3. Проблемы управляемого термоядерного синтеза
Исследователи всех развитых стран связывают надежды на преодоление грядущего энергетического кризиса с управляемой термоядерной реакцией. Такая реакция - синтез гелия из дейтерия и трития - миллионы лет протекает на Солнце, а в земных условиях ее вот уже пятьдесят лет пытаются осуществить в гигантских и очень дорогих лазерных установках, токамаках (устройство для осуществления реакции термоядерного синтеза в горячей плазме) и стеллараторах (замкнутая магнитная ловушка для удержания высокотемпературной плазмы). Однако есть и другие пути решения этой непростой задачи, и вместо огромных токамаков для осуществления термоядерного синтеза можно будет, вероятно, использовать довольно компактный и недорогой коллайдер - ускоритель на встречных пучках.
Для работы Токамака необходимо очень небольшое количество лития и дейтерия. Например, реактор с электрической мощностью 1 ГВт сжигает около 100 кг дейтерия и 300 кг лития в год. Если предположить, что все термоядерные электростанции будут производить 10 трлн. кВт/ч электроэнергии в год, то есть столько же, сколько сегодня производят все электростанции Земли, то мировых запасов дейтерия и лития хватит на то, чтобы снабжать человечество энергией в течение многих миллионов лет.
Кроме слияния дейтерия и лития возможен чисто солнечный термояд, когда соединяются два атома дейтерия. В случае освоения этой реакции энергетические проблемы будут решены сразу и навсегда.
В любом из известных вариантов управляемого термоядерного синтеза (УТС) термоядерные реакции не могут войти в режим неконтролируемого нарастания мощности, следовательно, таким реакторам не присуща внутренняя безопасность.
С физической точки зрения задача формулируется несложно. Для осуществления самоподдерживающейся реакции ядерного синтеза необходимо и достаточно соблюсти два условия.
1. Энергия, участвующих в реакции ядер, должна составлять не менее 10 кэВ. Чтобы пошел ядерный синтез, участвующие в реакции ядра должны попасть в поле ядерных сил, радиус действия которых 10-12-10-13 с.см. Однако атомные ядра обладают положительным электрическим зарядом, а одноименные заряды отталкиваются. На рубеже действия ядерных сил энергия кулоновского отталкивания составляет величину порядка 10 кэВ. Чтобы преодолеть этот барьер, ядра при столкновении должны иметь кинетическую энергию, по крайней мере не меньше данной величины.
2. Произведение концентрации реагирующих ядер на время удержания, в течение которого они сохраняют указанную энергию, должно быть не менее 1014 с.см-3. Это условие - так называемый критерий Лоусона - определяет предел энергетической выгодности реакции. Чтобы энергия, выделившаяся в реакции синтеза, хотя бы покрывала расходы энергии на инициирование реакции, атомные ядра должны претерпеть много столкновений. В каждом столкновении, при котором происходит реакция синтеза между дейтерием (D) и тритием (Т), выделяется 17,6 МэВ энергии, т. е. примерно 3.10-12 Дж. Если, например, на поджиг затрачивается энергия 10 МДж, то реакция будет неубыточной, если в ней примут участие не менее 3.1018 пар D-T. А для этого довольно плотную плазму высокой энергии нужно удерживать в реакторе достаточно долго. Такое условие и выражается критерием Лоусона.
Если удастся одновременно выполнить оба требования, проблема управляемого термоядерного синтеза будет решена.
Однако техническая реализация данной физической задачи сталкивается с огромными трудностями. Ведь энергия 10 кэВ - это температура 100 миллионов градусов. Вещество при такой температуре удержать в течение даже долей секунды можно только в вакууме, изолировав его от стенок установки.
Но существует и другой метод решения этой проблемы – холодный термояд. Что такое холодный термояд - это аналог "горячей" термоядерной реакции проходящий при комнатной температуре.
В природе существует как минимум, два способа изменения материи внутри одной мерности континуума. Можно вскипятить воду на огне, т.е. термически, а можно в СВЧ печи, т.е. частотно. Результат один – вода закипает, разница лишь в том, что частотный метод более быстрый. Также используется достижение сверхвысокой температуры, чтобы расщепить ядро атома. Термический способ даёт неуправляемую ядерную реакцию. Энергия холодного термояда – энергия переходного состояния. Одним из основных условий конструкции реактора для проведения реакции холодного термояда есть условие его пирамидально – кристаллической формы. Другим важным условием есть наличие вращающегося магнитного и торсионного полей. Пересечение полей происходит в точке неустойчивого равновесия ядра водорода.
Учёные Рузи Талейархан из Ок-Риджской Национальной Лаборатории, Ричард Лейхи из Политехнического Университета им. Ренссилира и академик Роберт Нигматулин — зафиксировали в лабораторных условиях холодную термоядерную реакцию.
Группа использовала мензурку с жидким ацетоном размером с два-три стакана. Сквозь жидкость интенсивно пропускались звуковые волны, производя эффект, известный в физике как акустическая кавитация, следствием которой является сонолюминесценция. Во время кавитации в жидкости появлялись маленькие пузыри, которые увеличивались до двух миллиметров в диаметре и взрывались. Взрывы сопровождались вспышками света и выделением энергии т.е. температура внутри пузырьков в момент взрыва достигала 10 миллионов градусов по Кельвину, а выделяемой энергии, по утверждению экспериментаторов, достаточно для осуществления термоядерного синтеза.
"Технически" суть реакции заключается в том, что в результате соединения двух атомов дейтерия образуется третий — изотоп водорода, известный как тритий, и нейтрон, характеризующийся колоссальным количеством энергии.
... току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии. 8. Сверхбыстродействующие системы. Управляемый термоядерный синтез с инерциальным удержанием Трудности, связанные с магнитным удержанием плазмы, можно в принципе обойти, если сжигать ядерное горючее за чрезвычайно малые времена, когда ...
... на 2004 год [8]. Очередные переговоры по этому проекту пройдут в мае 2004 года в Вене. Реактор начнут создавать в 2006 году и планируют запустить в 2014. Принцип работы Термоядерный синтез* – это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез – из тяжелого изотопа водорода дейтерия образуется гелий. При этом ...
... экспериментального термоядерного реактора возглавляет Е.П.Велихов. США потратив 15 миллиардов долларов вышли из этого проекта, остальные 15 миллиардов уже потрачена международными научными организациями. 2. Технические , экологические и медицинские проблемы. При работе установок управляемого термоядерного синтеза (УТС). возникают нейтронные пучки и гамма излучение, а так же возникают ...
... энергии и какого качества понадобится, для того чтобы выделяемой энергии оказалось достаточно для покрытия расходов на запуск процесса энерговыделения. Этот вопрос мы обсудим ниже в связи с проблемами термоядерного синтеза. О качестве энергии лазеров В простейших случаях ограничения на преобразование энергии низкого качества в энергию высокого качества очевидны. Приведу несколько примеров из ...
0 комментариев