3.2 Выбор предохранителей и проверка тиристоров на токи короткого замыкания
При расчёте аварийных токов обычно используют относительные единицы, принимая за базу амплитуду установившегося тока трёхфазного короткого замыкания Im:
, (30)
где Kс max учитывает возможное повышение напряжения сети.
Рисунок 4. Амплитуда ударного тока и интеграл предельной нагрузки в относительных единицах при внутреннем КЗ тиристорного преобразователя по трёхфазной мостовой схеме
По зависимости относительного значения амплитуды ударного тока I*уд при внутреннем коротком замыкании от параметров трансформатора (рис.4) определим I*уд=0,9 (при ).
Тогда амплитуда тока короткого замыкания:
, (31)
.
Тепловое воздействие на вентили преобразователя характеризуется интегралом предельной нагрузки .
По зависимости относительного значения интеграла предельной нагрузки от параметров трансформатора (рис. 4) определим W*= 0,41.10-4 (при ).
Интеграл предельной нагрузки:
, (32)
.
Ударный неповторяющийся ток тиристора в открытом состоянии (в соответствии с табл. 3) ITSM= 4 кА.
По значению ударного тока ITSM может быть определён защитный показатель –значение интеграла от квадрата ударного прямого тока синусоидальной формы за время полупериода напряжения сети:
, (33)
Из сравнения видно, что тиристор не выдерживает ударный ток: ITSM < Iуд; WT > W. Необходима установка предохранителей.
Проведём предварительный выбор предохранителя. Номинальное линейное напряжение на вторичной стороне трансформатора U2Л = 205 В. Действующее значение тока через тиристор:
(34)
Выбранный предохранитель типа ПП57-3137 на номинальное напряжение 220 В, номинальный ток 100 А с плавкой вставкой на 100 А [1] обеспечивает защиту тиристоров от тока короткого замыкания. Тем не менее, применим параллельное соединение двух тиристоров. При этом действующее значение тока, протекающего через тиристор при токе Iу:
(35)
Где Кв – число параллельно соединенных вентилей;
При перегрузке действующее значение тока через тиристор при параллельном соединении:
(36)
По времятоковым характеристикам видно, что плавкая вставка выдержит эту перегрузку в течение более 10 мин, что значительно больше заданного времени (tП = 2 с). Таким образом, выбранная плавкая вставка обеспечивает работу преобразователя при заданных нагрузках.
Проверим условие защиты тиристора на токи короткого замыкания. Действующее значение первой полуволны тока короткого замыкания при внутреннем коротком замыкании:
, (37)
Тогда по характеристикам для интеграла отключения и тока, ограниченного предохранителем [1] найдем при I0 = Iуд.д: Wпр = 0,9.104 А2.с; Iпр = 4 кА.
Учитывая, количество параллельно включенных вентилей nв и коэффициента неравномерности распределения токов по вентилям КВ, получим:
Максимальная амплитуда аварийного тока через «здоровый» тиристор, которая ограничивается предохранителем, не должна превышать допустимый ударный ток:
ITSM> I′пр . (38)
Максимально возможный ограниченный предохранителем интеграл тока через любой неповрежденный тиристор должен быть меньше его защитного показателя:
Wt > W′пр . (39)
Оба условия выполняются с большим запасом (4000 А > 2200 А; 87000 А2.с > 2700 А2.с), следовательно, при выходе из строя одного из тиристоров предохранитель обеспечивает защиту остальных. Применение параллельного соединения двух тиристоров обосновано, так как иначе условия (38) и (39) не были бы выполнены.
Теперь можно считать, что тиристоры и предохранители выбраны окончательно.
0 комментариев