4.5 Электрический расчет проходного изолятора на 110 кВ с бумажно-масляной изоляцией
Вводами называются проходные изоляторы на напряжения 35кВ и выше с более сложной внутренней изоляцией. Вводы применяются в качестве проходных изоляторов трансформаторов, выключателей и других аппаратов. Основными характеристиками ввода являются номинальное напряжение, рабочий ток и во многих случаях допустимая механическая нагрузка на токоведущий стержень.
Ввод представляет собой конструкцию с внешней и внутренней изоляцией. К внешней изоляции относятся промежутки в атмосферном воздухе вдоль поверхности изоляционного тела, к внутренней – участки в самом изоляционном теле, а также промежутки вдоль поверхности изоляционного тела, находящиеся внутри корпуса, если последний заполнен газообразным или жидким диэлектриком. Конструкция внутренней изоляции ввода оказывает большое влияние и на характеристики его внешней изоляции. Например, от числа и размеров дополнительных электродов, располагаемых в изоляционном теле для регулирования электрического поля, зависит характер изменения напряженности вдоль поверхности изолятора и, следовательно, разрядные напряжения его внешней изоляции.
Изоляционное тело служит одновременно и креплением токоведущего стержня. Оно воспринимает все механические усилия, которые действуют на стержень. С увеличением номинального напряжения и размеров изоляционного тела резко возрастают механические нагрузки от собственной массы изолятора. Наиболее опасными для вводов являются механические нагрузки, изгибающие его изоляционное тело. Поэтому для крупных изоляторов, имеющих большую массу, ограничивают угол отклонения от вертикали в рабочем положении.
Нагрев ввода обуславливает потери в токоведущем стержне от рабочих токов, а также диэлектрические потери в изоляционном теле. Кроме того, нагрев может происходить и за счет тепловыделений, имеющих место внутри корпуса оборудования. Например, в трансформаторах, реакторах и силовых конденсаторах вводы соприкасаются с нагретым маслом, заполняющим внутренний объем баков. С увеличением рабочего напряжения и радиальных размеров изолятора отвод тепла от токоведущего стержня и из толщи изоляции значительно затрудняется. Поэтому становятся более жесткими и требования в отношении диэлектрических потерь во внутренней изоляции.
Вводы на 110кВ и выше выполняются только заполненными маслом, т.е. с маслобарьерной или бумажно-масляной внутренней изоляцией. Для аппаратов и трансформаторов на напряжения 110кВ и выше в последние годы преимущественное применение получили вводы с бумажно-масляной изоляцией. Конструкция такого ввода на напряжение 110кВ показана на листе. Основной внутренней изоляцией в нём является пропитанный маслом бумажный остов, намотанный на токоведущий стержень.
Благодаря высокой кратковременной и длительной электрической прочности бумажно-масляной изоляции, вводы указанного типа имеют наименьшие радиальные размеры. Основной их недостаток – резкое ухудшение характеристик при увлажнении. В связи с этим к их конструкции предъявляются повышенные требования в отношении герметичности; маслорасширители непременно снабжаются специальными осушителями воздуха.
Расчёт изоляционного остова ввода с бумажно-масляной изоляцией для трансформатора на 110 кВ.
Чтобы пренебречь изменением, напряженность электрического поля в аксиальном направлении считаем, что емкости слоев изоляционного остова одинаковы.
Выдерживаемое напряжение в сухом состоянии UC0=295кВ.
Выдерживаемое напряжение под дождём UМ0=215кВ.
Испытательное напряжение UИС=265кВ.
Расчётное напряжение ввода по 1.55[2]:
кВ
Фазовое расчётное напряжение по 1.56[2]:
кВ
Наименьшую толщину слоя изоляции примем =0,1см. При такой толщине слоя максимальная расчётная напряжённость, вычисляемая по напряжению скользящи скользящих разрядов по 1.75[2]:
кВ/см, где e=3.5 для бумаги пропитанной маслом.
Расчётная напряжённость, вычисляемая по напряжённости неустойчивой ионизации (по условию частичных разрядов) в принятой толщине слоя по 1.66[2]:
кВ/см.
За расчётную принимаем наименьшую из напряжённостей, т.е.Еr.макс.расч.=125кВ/см.
Количество слоёв в изоляционном остове по 1.74[2]:
26.
При таком количестве слоёв длина уступа по масляной части по 1.79[2]:
см,
где коэффициент запаса электрической прочности по отношению к расчетному напряжению m=1.4.
Сумма длин уступов по масляной части остова:
см.
Длину уступа по воздушной части принимаем по 1.84[2]:
см.
см
Принимаем см,
а сумма длин уступов по воздушной части остова:
см,
полная длина уступов:
см.
При условии получения минимального объёма остова длина n-ой заземляемой обкладки по 1.88[2]:
см, где для условия минимума x=4.1.
длина нулевой обкладки остова по 1.89[2]:
см
и параметр:
.
Радиус нулевой обкладки по 1.95[2]:
см,
радиус n-ой обкладки по 1.96[2]:
см.
Результаты расчета остальных слоев сведем в таблицу:
Параметр А будет равен:
а параметр:
Максимальная напряженность в слое x:
кВ/см, где напряжение в слое Uсл=U/n=325/26=12.45кВ/см.
Длина слоя x:
Максимальная расчётная напряжённость получилась равной 125 кВ/см. Максимальная радиальная напряжённость при рабочем напряжении ввода в слое наименьшей толщины равна 28кВ/см, а допустимая напряжённость по напряжённости ионизации составляет 37кВ/см.
Результаты расчета остова даны в таблице.
Номер слоя |
|
|
|
|
|
0 | - | 0,1398 | 1,15 | - | 127,2 |
1 | 0,0868 | 0,2266 | 1,25 | 125 | 123,5 |
2 | 0,0842 | 0,3102 | 1,38 | 118,5 | 119,8 |
3 | 0,0816 | 0,3924 | 1,48 | 112,5 | 116,1 |
4 | 0,0790 | 0,4714 | 1,60 | 107,5 | 112,4 |
5 | 0,0764 | 0,5478 | 1,73 | 102,0 | 108,7 |
6 | 0,0738 | 0,6216 | 1,86 | 98,0 | 105,0 |
7 | 0,0712 | 0,6928 | 2,00 | 94,0 | 101,3 |
8 | 0,0686 | 0,7614 | 2,14 | 91,5 | 97,6 |
9 | 0,0660 | 0,8274 | 2,29 | 88,3 | 93,9 |
10 | 0,0634 | 0,8908 | 2,44 | 86,0 | 90,2 |
11 | 0,0608 | 0,9576 | 2,59 | 84,5 | 86,5 |
12 | 0,0582 | 1,0098 | 2,74 | 82,7 | 82,8 |
13 | 0,0556 | 1,0654 | 2,90 | 82 | 79,1 |
14 | 0,0530 | 1,1184 | 3,06 | 81,5 | 75,4 |
15 | 0,0504 | 1,1688 | 3,22 | 80,7 | 71,7 |
16 | 0,0478 | 1,2166 | 3,37 | 81,3 | 68,0 |
17 | 0,0452 | 1,2618 | 3,53 | 82,2 | 64,3 |
18 | 0,0426 | 1,3044 | 3,69 | 82,9 | 60,6 |
19 | 0,0400 | 1,3444 | 3,84 | 85,0 | 56,9 |
20 | 0,0374 | 1,3818 | 3,98 | 86,8 | 53,2 |
21 | 0,0348 | 1,4166 | 4,12 | 90,0 | 49,5 |
22 | 0,0322 | 1,4488 | 4,26 | 94,8 | 45,8 |
23 | 0,0296 | 1,4784 | 4,39 | 99,0 | 42,1 |
24 | 0,0270 | 1,5054 | 4,51 | 105 | 38,4 |
25 | 0,0244 | 1,5298 | 4,62 | 113,5 | 34,7 |
26 | 0,0218 | 1,5510 | 4,72 | 125 | 31,0 |
2) Определение геометрических размеров ввода.
Длина верхней покрышки:
см,
Длина нижней покрышки:
см
тогда
Длина соединительной втулки:
см
Внутренний диаметр соединительной втулки примем:
см,
а наружный: см
Диаметр покрышек примем:
см,
а наружный: см.
Диаметр по крыльям примем :
см.
Вылет крыла примем a=5 см, при таком вылете шаг принимаем t=8,5см. При длине верхней покрышки Lвп=85см число крыльев:
крыльев.
Мокроразрядное напряжение ввода при выбранных размерах и числе крыльев:
кВ.
Задано UМН.=215кВ, запас составляет 12%. Мокрооазрядные напряжения имеют разброс порядка 10 – 15%, следовательно, при выбранной длине покрышки минимальное значение мокроразрядного напряжения является достаточным.
кВ,
кВ/см,
кВ/см.
Средняя радиальная напряженность, взятая по максимуму:
кВ/см.
Объём изоляционного остова:
дм3
Максимальная напряжённость у фланца:
кВ/см
где d – толщина фарфорового слоя,
k – коэффициент пропорциональности [2].
При таких выбранных размерах изоляционного остова аксиальные и радиальные напряженности электрического поля максимальные и в рабочем режиме не превышают допустимых. Выбранные размеры покрышек ввода отвечают допустимым мокроразрядному и сухоразрядному напряжениям. Размеры ввода и изоляционного остова были выбраны исходя из наивыгоднейших размеров (x=4.1).
Распределение напряженности электрического поля по слоям изоляции ввода.
Напряженность электрического поля в вводе в зависимости от rx и e x
по 2.21[2]:
где:
rx - радиус изоляционного слоя х, см.
e х - диэлектрическая проницаемость слоя х коэффициент А:
e1=3.5 для бумажно-масляной изоляции (БМИ);
e2=2.6 для трансформаторного масла;
e3=6.5 для фарфора;
r0=1.15см – радиус токоведущего стержня;
r1=4.72см – радиус изоляционного остова;
r2=6.25см– внутренний диаметр фарфоровой покрышки;
r3=8.75см – внешний диаметр фарфоровой покрышки;
Uнаиб.раб.фаз.=73кВ.
Результаты расчета:
Тип изоляции | rx, см | Ex, кВ/см |
Изоляционный остов (БМИ) e1=3.5 | 1.15 | 32.3 |
2 | 18.6 | |
3 | 12.4 | |
4.72 | 7.9 | |
Трансформаторное масло e2=2.6 | 4.72 | 10.6 |
5 | 10 | |
5.5 | 9.1 | |
6 | 8.3 | |
6.25 | 8 | |
Фарфор e3=6.5 | 6.25 | 3.2 |
7 | 2.9 | |
7.5 | 2.7 | |
8 | 2.5 | |
8.75 | 2.3 |
... меры к его понижению (забивка дополнительных электродов и т.д.). Глава 7. РАСЧЁТ ПОКАЗАТЕЛЕЙ ЭКОНОМИЧСЕКОЙ ЭФФЕКТИВНОСТИ ПРОЕКТА В данной главе рассмотрим вопросы капиталовложений при реконструкции подстанции, расчет эксплуатационных затрат при проведении текущих ремонтов и технических обслуживаний, определение затрат на потреблённую электроэнергию, расчет экономических показателей при ...
... 2.1 Разработка и обоснование алгоритма функционирования и структурной схемы проектируемого устройства На основе проведенного исследования методов и устройств компенсации реактивной мощности в системах электроснабжения преобразовательных установок поставим задачу проектирования. Необходимо синтезировать устройство компенсации реактивной мощности для систем электроснабжения преобразовательных ...
... комиссии с участием представителя госнадзора и им выдаются удостоверения. Повышение рабочими уровня знаний по безопасности труда осуществляется на курсах повышения квалификации, ее сдачей экзаменов. 136. Виды инструктажа, регистрация инструктажа. Инструктаж работающих подразделяется на: 1. вводный 2. первичный на рабочем месте 3. повторный 4. внеплановый 5. целевой Все ...
... 1.5 Уровни помех и линейных затуханий 1.5.1 Электрические помехи в каналах ВЧ связи по ВЛ Электрические помехи имеются в любом канале связи. Они являются основным фактором, ограничивающим дальность передачи информации из-за того, что сигналы, принимаемые приемником, искажаются помехами. Для того чтобы искажения не выходили за пределы, допустимые для данного вида информации, должно быть ...
0 комментариев