2.1.3 Выбор трансформаторов
Трансформатор представляет собой электромагнитный аппарат переменного тока, предназначенный для преобразования эл. энергии одного напряжения в электрическую энергию другого напряжения. В основу работы трансформатора положен закон электромагнитной индукции. [4]
Трансформатор, имеющий на стержне магнитоотвода две обмотки: обмотку высокого напряжения (ВН), обмотку низкого напряжения (НН), называют двухобмоточными. Мощные силовые трансформаторы выполняют трехобмоточными. Они имеют три обмотки: обмотку высокого напряжения (ВН), обмотку среднего (СН) и обмотку низкого напряжения (НН).
Понижающие трансформаторы служат для передачи электрической энергии на расстояние и для распределения ее между потребителями. Они отличаются относительно большой мощностью и высоким напряжением.
Понижающие трансформаторы изготавливают на определенные стандартные мощности. В 1985 году введена в действие шкала мощностей трансформаторов, согласно которой номинальные мощности трехфазных трансформаторов должны соответствовать определенному ряду. Первенцем отечественного трансформаторостроения является Московский электрозавод.
Число и мощность понижающих трансформаторов следует выбирать исходя из технико-экономических расчетов и нормативных требований по резервированию, согласно которым, на тяговых подстанциях следует предусматривать по два понижающих трансформатора. Мощность их целесообразно принять такой, чтобы при отключении одного из них электроснабжение обеспечивалось оставшимся в работе трансформатором [4].
В данной дипломной работе необходимо выбрать трехобмоточный понижающий трансформатор 110/35/10. Мощность понижающего трансформатора транзитной тяговой подстанции определяем из условий аварийного режима:
SH.TP ≥ Sмах/Кав·(n-1), где [5]
Sмах – суммарная максимальная нагрузка первичной обмотки понижающего трансформатора,
Кав=1,4 – коэффициент допустимой перегрузки трансформатора по отношению к его номинальной мощности в аварийном режиме,
n – количество трансформаторов.
Sмах = Sмах Т + Sмах35, где [5]
Sмах Т – мощность потребителей, присоединенных к шинам тягового электроснабжения, кВ·А,
Sмах 35 – максимальная полная мощность всех районных потребителей, питающихся от обмотки СН(35кВ).
SмахТ = SТ + Sмах10 + SТСН, где [5]
SТ – мощность, расходуемая на тягу, кВ·А
Sмах10 – мощность нетяговых потребителей, питающихся от обмотки НН (10 кВ), кВ·А
SТСН – номинальная мощность трансформатора собственных нужд, кВ·А
Т.к нами выбран тяговый трансформатор ТМПУ-16000/10, номинальная мощность которого SН =11400 кВ·А, то мощность, расходуемая на тягу поездов будет равна SТ = 11400.
На тяговой подстанции с питающим напряжением 35 кВ установлен трансформатор собственных нужд, который имеет следующие характеристики:
Тип – ТМ-320/35,
Номинальная мощность - 320 кВ·А,
Номинальное напряжение первичной обмотки – 35 кВ,
Номинальное напряжение вторичной обмотки – 0,23 кВ.
Для того, чтобы не изменять схему питания фидеров СЦБ-6кВ, необходимо заменить трансформатор собственных нужд на трансформатор с таким же напряжением обмотки НН (0,23 кВ), с напряжением обмотки ВН – 10 кВ, т.к. ТСН будет подключен к сборным шинам тягового электроснабжения, с мощностью SН, которая будет больше, чем SН =320 кВ·А, т.к. при изменении схемы питания тяговой подстанции появятся дополнительные потребители нагрузки собственных нужд:
Таблица 2.1 – Потребители нагрузки собственных нужд
Мощность на единицу | Количество | Общая мощность, кВ·А | |
Подогрев баков МКП-110 | 3,6 кВ·А | 2 | 7,2 |
Подогрев приводов МКП-110 | 0,8 кВ·А | 2 | 1,6 |
Обдув понижающих тр-ров | 4 кВ·А | 2 | 8 |
Всего | - | - | 16,8 |
Выбираем трансформатор собственных нужд по [3]
Тип – ТМ-400/10
Номинальная мощность - SТСН =400 кВ·А,
Номинальное напряжение первичной обмотки – 10 кВ,
Номинальное напряжение вторичной обмотки – 0,23 кВ.
На тяговой подстанции «Белгород» с питающим напряжением 35 кВ питание нетяговых потребителей осуществляется напряжением 10 кВ, которое преобразуется из напряжения 35 кВ с помощью трансформатора ТМ-1000/35.
Максимальную мощность нетяговых потребителей, питающихся от обмотки НН понижающего трансформатора, определяем по формуле:
Sмах10= (1+(Рпост + Рпер)/ 100), где [5]
n = 4 – количество нетяговых потребителей,
Рпост = 2% - постоянные потери в стали трансформатора;
Рпер = 10% - переменные потери в сетях и трансформаторах;
- максимальное значение нагрузки, кВт;
- сумма реактивных мощностей всех потребителей в час максимума суммарной нагрузки, кВар.
Таблица 2.2 – Почасовой расход электроэнергии по фидерам 10 кВ
t | активная мощность, кВт | Суммарная актив-ная нагруз-ка, кВт | реакт. мощность, кВар | Суммар-ная реактив-ная нагрузка, кВар | ||||
фидер №1,2 «Спирт-завод» | фидер №1,2 РП - 10 | фидер ФПЭ К. Лопань | фидер №1,2 «Спирт-завод» | фидер №1,2 РП - 10 | фидер ФПЭ К. Лопань | |||
1 | 200 | 50 | - | 250 | - | - | - | |
2 | 100 | 200 | - | 300 | - | 100 | - | 100 |
3 | 200 | 100 | 10 | 310 | 100 | - | - | 100 |
4 | 200 | 100 | 20 | 320 | 200 | 100 | - | 300 |
5 | 300 | 200 | 10 | 510 | 200 | 100 | - | 300 |
6 | 400 | 100 | - | 500 | 200 | - | - | 200 |
7 | 400 | 100 | 10 | 510 | 300 | 100 | - | 400 |
8 | 600 | 200 | 30 | 830 | 200 | 100 | - | 300 |
9 | 500 | 200 | 40 | 740 | 200 | 100 | - | 300 |
10 | 400 | 200 | 20 | 620 | 300 | 100 | - | 400 |
11 | 400 | 100 | 20 | 520 | 300 | 100 | - | 400 |
12 | 200 | 200 | 10 | 410 | 100 | 100 | - | 200 |
13 | 200 | 100 | 10 | 310 | 100 | 100 | - | 200 |
14 | 400 | 100 | 10 | 510 | 100 | - | - | 100 |
15 | 100 | 200 | 30 | 330 | 100 | 100 | - | 200 |
16 | 400 | 100 | 10 | 510 | 200 | - | - | 200 |
17 | 600 | 100 | 10 | 710 | 300 | 100 | - | 400 |
18 | 400 | 200 | 10 | 610 | 300 | 100 | - | 400 |
19 | 200 | 50 | 10 | 260 | 100 | - | - | 100 |
20 | 200 | 100 | 0 | 310 | 100 | 100 | - | 200 |
21 | 400 | 200 | 10 | 610 | 200 | 100 | - | 300 |
22 | 300 | 100 | 10 | 410 | 200 | 100 | - | 300 |
23 | 100 | 500 | 10 | 160 | 100 | - | - | 100 |
24 | 100 | 50 | 10 | 160 | - | - | - | - |
На основании почасового расхода электроэнергии по фидерам 10 кВ (таблица 2.2) строим графики суммарной нагрузки (рис.7,8).
Максимальное значение суммарной нагрузки = 800 кВт приходится на 8 часов. Сумма реактивных мощностей нетяговых мощностей
10 кВ в 8 часов = 300 кВар.
Sмах10 = (1+(2 + 10)/ 100)=956,93 кВ·А.
Максимальная полная мощность всех районных потребителей, питающихся от обмотки СН (35 кВ) понижающего трансформатора:
Sмах35= (1+(Рпост + Рпер)/ 100), где [5]
n = 2 – количество нетяговых потребителей,
Рпост = 2% - постоянные потери в стали трансформатора;
Рпер = 10% - переменные потери в сетях и трансформаторах;
- максимальное значение нагрузки, кВт;
- сумма реактивных мощностей всех потребителей в час максимума суммарной нагрузки, кВар.
Таблица 2.3 – Почасовой расход электроэнергии по фидерам 35 кВ
t | фидера районных потребителей 35 кВ | Суммарная нагрузка | ||
ф. Бессоновка | ||||
активная, кВт | реактивная, кВар | актив кВт | реаактив кВар | |
1 | 3780 | 1470 | 3780 | 1470 |
2 | 3570 | 1260 | 3570 | 1260 |
3 | 3675 | 1890 | 3675 | 1890 |
4 | 3675 | 1260 | 3675 | 1260 |
5 | 3675 | 1575 | 3675 | 1575 |
7 | 4515 | 1575 | 4515 | 1575 |
8 | 7875 | 1470 | 3675 | 1470 |
9 | 3085 | 1155 | 5985 | 1155 |
10 | 2625 | 1575 | 2625 | 1575 |
11 | 4400 | 1365 | 3570 | 1365 |
12 | 4670 | 1260 | 3570 | 1260 |
13 | 4695 | 1260 | 4095 | 1260 |
14 | 3780 | 1470 | 3780 | 1470 |
15 | 4905 | 1155 | 4305 | 1155 |
16 | 3650 | 1470 | 3150 | 1470 |
17 | 3465 | 1260 | 3465 | 1260 |
18 | 5880 | 1365 | 5880 | 1365 |
19 | 3885 | 1260 | 3885 | 1260 |
20 | 4725 | 1365 | 4725 | 1365 |
21 | 3990 | 1260 | 3990 | 1260 |
22 | 4305 | 1260 | 4305 | 1260 |
23 | 3885 | 1260 | 3885 | 1260 |
24 | 3885 | 1365 | 3885 | 1365 |
По данным почасового расхода электроэнергии по фидерам районных потребителей 35 кВ строим графики суммарной нагрузки (рис.9,10).
Максимальное значение суммарной нагрузки фидеров районных потребителей 35 кВ = 9660 кВт приходится на 18 часов. Сумма реактивных мощностей районных потребителей в 18 часов = 3570 кВар.
Sмах35= (1+(2 + 10)/ 100)=11534,4 93 кВ·А
SмахТ = SТ + Sмах10 + SТСН = 11400 +956,93 +400 = 12756,93 кВ·А
Sмах = SмахТ + Sмах35 = 12756,93 +11534,4 = 24291,33 кВ·А
SH.TP ≥ Smax/Кав·(n-1), SH.TP = 24291,33/ 1,4· (2-1) = 17350,95 кВ·А.
Т.к. в перспективе возможно подключение к обмотке НН (10кВ) других нетяговых потребителей, и к обмотке СН (35 кВ) – других районных потребителей, а также обмотка СН может использоваться в качестве резервного питания ТЭЦ (по линии 35 кВ), то выбираем понижающий трансформатор типа ТДТН-20000/110-Б, который имеет следующие технические данные:
Тип - ТДТН-20000/110-Б;
Число фаз 3;
Номинальная частота – 50 Гц;
Номинальное напряжение обмоток трансформатора:
ВН-115 кВ, СН-38,5 кВ, НН-11 кВ;
Номинальный ток обмоток трансформатора:
ВН-100,5 А, СН-300 А, НН-1050 А;
Номинальная мощность обмоток трансформатора:
при включенном дутье - ВН-20000 кВ·А, СН-20000 кВ·А, НН-20000 кВ·А;
при отключенном дутье - ВН-10000 кВ·А, СН-10000 кВ·А, НН-10000кВ·А;
Напряжение к.з.: Вн-СН-17%, ВН-НН-10,5%, СН-НН-6%;
Регулирование напряжения под нагрузкой: на стороне ВН в диапазоне ±8х2% от номинального значения обмотки ВН.
Трансформатор силовой трехфазный, трехобмоточный с естественной циркуляцией масла и принудительным дутьевым охлаждением, с регулированием напряжения под нагрузкой предназначен для стационарной установки на открытом воздухе на высоте не более 1000 м над уровнем моря при естественном изменении температуры окружающего воздуха от -40°С до + 40°С.
Выбор тягового трансформатора
Тяговые трансформаторы предназначены для питания преобразовательных агрегатов. Основным отличием тяговых трансформаторов является схема соединения обмоток, размещение и крепление их на сердечниках, а некоторые еще наличием уравнительного реактора.
Эти трансформаторы имеют масляное охлаждение. Вентильные обмотки выполняют из параллельно соединенных дисковых катушек, которые прессуются специальными сегментами или прессующими кольцами. Вентильную обмотку размещают снаружи по отношению к сетевой обмотке. Такая компоновка, несмотря на некоторое увеличение расхода меди, обеспечивает высокую электродинамическую прочность и является более технологичной. [1]
На тяговой подстанции “Белгород” с питающим напряжением 35 кВ установлены два преобразовательных агрегата ПВЭ-3 (полупроводниковой выпрямитель для электрифицированных железных дорог), с каждым из которых работают два соединенных параллельно тяговых трансформатора ТМРУ-6200/35 – трансформаторы масляные, для питания ртутных выпрямителей, с уравнительным реактором, номинальной мощностью 3700 кВ·А каждый, на напряжение сетевой обмотки 35 кВ. Но т.к. в дипломном проекте при модернизации оборудования тяговой подстанции, питание сетевой обмотки тягового трансформатора будет осуществляться от сборных шин 10 кВ, то необходима замена тягового трансформатора, который будет работать с преобразовательным агрегатом ПВЭ-3.
Паспортные данные ПВЭ-3, необходимые для расчета мощности тягового трансформатора:
Мощность – 9900 кВт.
Номинальное выпрямленное напряжение – 3.3 кВ.
Максимальное выпрямленное напряжение – 4кВ.
Номинальный выпрямленный ток – 3000 А.
Длительно допустимый выпрямленный ток – 4500 кА.
Схема выпрямления – «две обратные звезды с уравнительным реактором».
Допустимые перегрузки ПВЭ-3:
25% от номинального значения – 1 раз в 2 часа в течении 15 мин.
50% от номинально значения – 1 раз в 1 час в течении 2 мин.
100% от номинального значения – 1 раз в 2 мин в течении 10 с.
Т.к. действующее значение выпрямленного тока подстанции не задано, то расчет мощности тягового трансформатора производим по суточному графику нагрузки тяговой подстанции «Белгород», построенному на основании почасового расхода электроэнергии на тягу поездов на 11.06.01.
Таблица 2.4 – Почасовой расход электроэнергии 11.06.2001 г.
Время | на тягу поездов | |
активная, кВт | реактивная, кВар | |
1 | 2240 | 1120 |
2 | 1400 | 840 |
3 | 1400 | 840 |
4 | 1680 | 840 |
5 | 2240 | 1120 |
6 | 1960 | 560 |
7 | 1680 | 560 |
8 | 2520 | 980 |
9 | 2800 | 1120 |
10 | 1400 | 840 |
11 | 280 | 560 |
12 | 840 | 560 |
13 | 1120 | 560 |
14 | 560 | 560 |
15 | 840 | 560 |
16 | 560 | 560 |
17 | 560 | 140 |
18 | 840 | 560 |
19 | 560 | 280 |
20 | 840 | 560 |
21 | 1120 | 560 |
22 | 1120 | 840 |
23 | 1120 | 840 |
24 | 1680 | 1120 |
SH.TP ≥ ST/N – мощность тягового трансформатора, к·ВА [5]
ST = (1+(Рпост + Рпер)/ 100), где
Рпост = 2% - постоянные потери в стали трансформатора;
Рпер = 10% - переменные потери в сетях и трансформаторах;
- максимальное значение нагрузки, кВт;
- значение реактивной нагрузки в час максимума суммарной нагрузки, кВар.
Максимальное значение активной нагрузки приходится на 9 часов Р=2800 кВт. В это время значение реактивной нагрузки Q=1120 Вар.
ST = (1+(2 + 10)/ 100)=3388 кВ·А.
N - кол-во преобразовательных агрегатов. На тяговой подстанции установлены два преобразовательных агрегата ПВЭ-3, следовательно, N=2.
SH.TP =3377/2=1688,5 кВ·А.
Выбор тягового трансформатора производим по [3], исходя из следующих данных:
- Номинальная мощность тягового трансформатора должна быть больше SH.TP =1688,5 кВ·А.
- Номинальное напряжение преобразователя ПВЭ-3 UdH=3,3 кВ.
- Номинальный ток преобразователя ПВЭ-3 IdH=3000 А.
- Номинальное напряжение вентильной обмотки тягового трансформатора U2=3,02 кВ.
- Номинальное напряжение сетевой обмотки – U1=10 кВ.
- Схема соединения вентильной обмотки – «две обратные звезды с уравнительным реактором».
Исходя из этих данных с учетом перспективы развития ж/д транспорта выбираем два тяговых трансформатора ТМПУ-16000/10 ЖУ-1, каждый из которых будет работать с преобразовательным агрегатом ПВЭ-3.
ТМПУ-16000/10 ЖУ-1 – трансформатор масляный, для полупроводниковых выпрямителей, с уравнительным реактором, мощностью 16000 кВ·А, на на номинальное напряжение сетевой обмотки 10 кВ·А, для ж/д транспорта, для умеренного климата.
Эл. хар-ки тяг. трансформатора ТМПУ-16000/10 ЖУ-1.
- Ном. U сетевой обмотки U1=10 кВ.
- Ном. U вентильной обмотки U2=3,02 кВ.
- Ном. ток преобразователя IdH=3000 А.
- Ном. U преобразователя UdH=3,3 кВ.
- Схема соединения первичной обмотки – «звезда».
- Схема соединения вторичной обмотки – «две обратные звезды с уравнительным реактором».
- Номинальная мощность тягового трансформатора SH =11400 кВ·А.
Номинальная мощность SH =11400 кВ·А меньше баковой мощности Sб =16000 кВ·А, потому что в баке тр-ра ТМПУ 16000/10, кроме сетевой и вентильной обмотки, размещен уравнительный реактор типа КРОМ-500 – катушка реактивная однофазная масляная.
... с запозданием реагирует на падение напряжения и привносит с собой противоречивые требования по техническому содержанию. Компенсаторы дисбаланса Еще во времена проектирования первых тяговых подстанций на 25 кВ, 50 Гц переменного тока возникла проблема их подключения к национальной энергетической сети. Действительно, тяговые подстанции соединяются с сетью поставщика энергии (государственной ...
... 380/260 – 40/80 Sн = 20,8 кВт Sн > Sзар 20,8 > 2,834 кВт Iн = 80 А Iн > Iзар 80 > 21,1 А Глава 4. План тяговой подстанции Разработка плана тяговой подстанции. План транзитной тяговой подстанции переменного тока системы электроснабжения 2 ´ 27,5 кВ разрабатываем в соответствии с рекомендациями изложенными в [4]. Открытую часть подстанции монтируем на конструкциях, ...
... 115537,893 Итого - - 1050310,49 Годовой эффект совокупных затрат определяется по формуле, р.: Срок окупаемости срок определяется по формуле (2.9) Коэффициент эффективности определяется по формуле (2.10) Применение цифровой защиты фидеров контактной сети постоянного тока ЦЗАФ-3,3 выгодно, так как эффективность от внедрения данной защиты составляет 2,334 и окупится менее чем за ...
... сети Экономическая оценка работы спроектированной системы тягового электроснабжения не может быть выполнена без оценки потерь электроэнергии в ее элементах. Потери электроэнергии в системе тягового электроснабжения складываются, в основном, из потерь в тяговой сети и потерь в трансформаторах. Ниже выполнен расчет этих потерь. В результате расчета получены: значения годовых потерь энергии в ...
0 комментариев