4. ВЗАИМОДЕЙСТВИЕ ИЗЛУЧЕНИЙ С ВЕЩЕСТВОМ
Для регистрации радиоактивности и мер защиты от ядерных излучений, необходимо знать за счет каких процессов теряется энергия излучения, проходя через вещество; какова ионизирующая способность различных видов излучения.
В основном заряженные частицы, проходя через вещество, теряют свою энергию за счет столкновений с атомами этого вещества. Так как масса ядра вещества на много больше по сравнению с массой электронов атома, то наблюдаются существенные различия между столкновениями "электронными" (падающая частица сталкивается с электроном) и "ядерными" столкновениями (падающая частица сталкивается с ядром атома). В первом случае происходит возбуждение или ионизация атома (неупругое столкновение), во втором — частица и атом приходят в движение как единая система (упругое столкновение). Ядерные столкновения происходят в веществе многократно, что приводит к рассеянию частиц. Если в результате взаимодействия появляются новые частицы или исчезают первоначальные, то этот процесс называют реакцией. В частности, если возникают при взаимодействии ядра с новыми свойствами, то реакция называется ядерной.
Процесс радиоактивного превращения элементов всегда сопровождаются выбросом элементарных частиц. Это могут быть заряженные частицы такие, как альфа-, бета-частицы, протоны и другие, нейтральные — нейтроны, нейтрино, так и гамма кванты различных энергий.
Пучки заряженных элементарных частиц, ядра лёгких элементов, ионов оказывают ионизирующее воздействие на вещество, через которые они проходят. Опосредствованное ионизирующее воздействие оказывают и нейтральные частицы, прежде всего нейтроны: в результате взаимодействия этих частиц с ядрами веществ испускаются ядром протон и гамма квант, которые и вызывают ионизацию среды.
Рассмотрим процессы, сопровождающие прохождение ионизирующего излучения через вещество.
4.1 ВЗАИМОДЕЙСТВИЕ АЛЬФА-ЧАСТИЦ С ВЕЩЕСТВОМ
История открытия и изучения альфа-частиц связана с именем Резерфорда. При помощи альфа-частиц Резерфорд проводил исследования большинства атомных ядер.
Альфа-частицы это атомы гелия, потерявшие два электрона, т.е. ядра атома гелия
Ядро гелия, состоящее из двух протонов и двух нейтронов устойчиво, частицы связаны в нем прочно.
В настоящее время известно более 200 альфа активных ядер, главным образом тяжёлых (А > 200, Z > 82 ), исключение составляют редкоземельные элементы (А=140-160). Примером альфа распада может служить распад изотопов урана:
Скорости, с которыми альфа-частицы ,, вылетают из распавшегося ядра, очень велики и колеблются для разных ядер в пределах от 1,4 х 107 до 2,0x10' м/с, что соответствует кинетическим энергиям этих частиц 4—8,8 МэВ. Альфа-частицы в состав ядра не входят, и, по современным представлениям, они образуются в момент радиоактивного распада при встрече движущихся внутри ядра 2-х протонов и 2-х нейтронов.
Пролетая через вещество, альфа-частицы постепенно теряют свою энергию, затрачивая ее на ионизацию газов. Причём в начале пути, когда энергия альфа-частиц велика, удельная ионизация меньше, чем в конце пути.
Под пробегом частицы в веществе понимается толщина слоя этого вещества, которую может пройти эта частица до полной остановки. Пробег частиц в основном определен для тяжелых частиц, т.к. их путь представляет прямую линию с наименьшим рассеянием. Пробег альфа-частиц зависит как от энергии частиц, так и от плотности вещества, в котором они движутся.
По пробегу альфа частицы можно определить ее энергию.
4.2 ВЗАИМОДЕЙСТВИЕ БЕТА-ЧАСТИЦ С ВЕЩЕСТВОМ
Бета-распад происходит, когда замена в атомном ядре ( нейтрона на протон энергетически выгодна, и образующееся новое ядро имеет большую энергию связи. Бета-излучение состоит из бета-частиц (электронов или позитронов), которые испускаются при бета-распаде радиоактивных изотопов. Электроны не входят в состав ядра и не выбрасываются из оболочки атома, при электроном бета- распаде происходит превращение нейтрона в протон с одновременным образованием электрона и вылетом антинейтрино. При этом заряд ядра и его порядковый номер увеличиваются на единицу. Электронный распад характерен для ядер с избыточным числом нейтронов. Примером электронного бета-распада может служить распад стронция:
При позитронном бета-распаде происходит превращение протона в нейтрон с образованием и выбросом из ядра позитрона. Заряд и порядковый номер ядра уменьшаются на единицу. Позитронный бета-распад наблюдается для неустойчивых ядер с избыточным числом протонов. Примером позитронного бета-распада может служить распад радионуклида натрия:
К бета-распаду относится также электронный захват (е-захват), т.е. захват атомным ядром одного из электронов своего атома. При этом один из протонов ядра превращается в нейтрон и испускается нейтрино. Возникшее ядро может оказаться в возбужденном состоянии.
Переходя в основное состояние оно испускает гамма-фотон. Место в электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышестоящих слоев, в результате возникает рентгеновское излучение.
Примером электронного захвата может служить следующая реакция:
Бета-частицы, испускаемые при бета-распаде, имеют различную энергию, поэтому и пробег их в веществе не одинаков. Путь, проходимый бета-частицей в веществе, представляет собою не прямую линию, как у альфа-частиц, а ломаную. Взаимодействуя с веществом среды, бета-частицы проходят вблизи ядра. В поле положительно заряженного ядра отрицательно заряженная бета-частица резко тормозится и теряет при этом часть своей энергии. Эта энергия излучается в виде тормозного рентгеновского излучения. С увеличением энергии бета-частиц и атомного номера вещества интенсивность рентгеновского излучения возрастает.
Ионизирующая способность бета-частиц много меньше, а длина пробега много больше, чем у альфа-частиц.
... в них радионуклидов искусственного происхождения. Радиоактивное загрязнение природной среды в районах расположения радиоционно - опасных объектов. БАЭС БАЭС расположена на территории Свердловской области, в 40 км к востоку от города Екатеринбурга на восточном берегу водохранилища, созданного на реке Пышма. Сточные воды БАЭС отводятся в Ольховское болото, связанное с рекой Пышма. с В 100 км ...
... предпринимать для ограничения облучения, если общественные издержки невелики; во-вторых, следует выработать принципы оценки размеров радиационной опасности при данных уровнях облучения» Облучение от контролируемых источников Если источник облучения контролируется, например ядерный реактор при нормальных условиях работы, то регулированием режима работы оборудования можно добиться того, чтобы ...
... легкие ранения и ожоги. Но эти поражения будут в ограниченном числе случаев и население способно самостоятельно оказать помощь пострадавшим и устранить повреждения. 3.Способы защиты человека от ядерного оружия. Защита населения от оружия массового поражения - одна из главных задач гражданской обороны. Планируются и проводятся в комплексе три основных способа защиты: -использование населением ...
... и других внешних признаков. 2. Очаг ядерного поражения. Очагом ядерного поражения называется территория, в пределах которой в результате воздействия ядерного оружия произошли массовые поражения людей, сельскохозяйственных животных, растений и (или) разрушения и повреждения зданий и сооружений. Очаг ядерного поражения характеризуется: количеством пораженных; размерами площадей поражения; зонами ...
0 комментариев