3.2.3 Гамма-випромінювання. Взаємодії g- променів з речовиною
Якщо ядро збуджене і знаходиться в стані з більш високою енергією, то воно може самочинно перейти на більш низький енергетичний рівень, випустивши при цьому фотон. Відстані між енергетичними рівнями ядер складають величину порядку 1-2 МеВ. Тому енергії фотонів, які випускаються ядрами, в сотні і тисячі разів перевищують енергію фотонів атомних оболонок. Такі високо енергетичні фотони, які випускаються ядрами атомів, називаються гамма-фотонами або гамма-квантами.
Установлено, що гамма-випромінювання ядер не є самостійним видом радіоактивності. Цей вид випромінювання завжди супроводжується a- і b- випромінюванням. Гамма-кванти є продуктом випромінювання не материнських а дочірніх ядер. За проміжок часу 10-13 – 10-14с дочірнє ядро переходить у нормальний або у менш збуджений стан, випромінюючи при цьому g- кванти строго відповідних енергій. Тому спектр g- випромінювання має дискретний характер.
При g- випромінюванні масове число А і зарядове число Z не змінюються, тому таке випромінювання не описується жодним правилом зміщення. При радіоактивних розпадах різних ядер g- кванти можуть мати енергію від 10 кеВ до 5 МеВ .
Гамма-кванти мають нульову масу спокою, а тому не сповільнюються середовищем. При проходженні g- квантів через середовище вони можуть або поглинатись, або розсіюватись.
Гамма-промені відносяться до сильно проникаючого випромі-нювання в речовині. Проходячи крізь речовину γ- кванти взаємодіють з атомами, електронами і ядрами, у результаті чого їх інтенсивність зменшується.
Знайдемо закон ослаблення паралельного моноенергетичного пучка γ- квантів у плоскій мішені. Нехай на поверхню плоскої мішені перпендикулярно до неї падає потік γ- квантів Іо (рис.2.3). Ослаблення пучка в речовині викликається поглинанням і розсіюванням γ- квантів.
Рис.2.3
Розсіяний γ- квант втрачає частину своєї енергії при зіткненні з електронами і змінює напрямок свого поширення. На відстані х від зовнішньої поверхні потік γ- квантів ослабляється до величини І(х). У тонкому шарі мішені товщиною dx з потоку виводиться dІ γ- квантів. Величина dІ пропорційна потоку І(х) на поверхні шару і товщині шару dx:
. (3.2.3.1)
Знак мінус у правій частині рівняння показує, що в шарі потік зменшується на dІ γ- квантів. Перепишемо це рівняння у вигляді:
. (3.2.3.2)
Коефіцієнт пропорційності μ називають повним лінійним коефіцієнтом ослаблення. Він має розмірність см-1 і чисельно дорівнює долі моноенергетичних γ- квантів, які вибувають з паралельного пучка на одиниці шляху випромінювання в речовині. Повний лінійний коефіцієнт ослаблення залежить від густини, порядкового номера речовини, а також від енергії γ- квантів:
. (3.2.3.3)
Помножимо ліву і праву частини рівняння (3.2.3.2) на dx, а потім проінтегруємо його в межах від 0 до х , одержимо:
. (3.2.3.4)
Після потенціювання одержимо закон Бугера ослаблення паралель-ного моно енергетичного пучка γ - квантів у речовині:
. (3.2.3.5)
При проходженні товщини речовини, рівної шару половинного ослаблення d1/2, потік γ- квантів зменшиться у два рази. Повний лінійний коефіцієнт ослаблення і шар половинного ослаблення пов'язані між собою рівнянням:
. (3.2.3.6)
Повний лінійний коефіцієнт ослаблення пропорційний густини речовини. Якщо розділити його на густину, то одержимо масовий коефіцієнт ослаблення:
. (3.2.3.7)
Величину μm вимірюють у квадратних сантиметрах на грам (см2/г). Він чисельно дорівнює частині моноенергетичних γ- квантів, які вибувають з пучка при проходженні шару мішені товщиною 1г/см2.
Коефіцієнт μm залежить від порядкового номера хімічного елемента речовини й енергії γ- квантів:
. (3.2.3.8)
Речовини з однаковими ефективними порядковими номерами мають рівні масові коефіцієнти ослаблення. Так, масові коефіцієнти ослаблення води, кисню, азоту, повітря, вуглецю і живої тканини мало відрізняються один від одного, тому що їх ефективні порядкові номери близькі за величиною.
Після заміни закон ослаблення (3.2.3.5) перепишеться у вигляді:
(3.2.3.9)
де - маса в грамах шару речовини товщиною х і площею поперечного перерізу 1 см2.
Зменшення гамма-квантів в пучку обумовлюється трьома основними, незалежними процесами: фотоефектом, комптон-ефектом і ефектом утворення електрон-позитронної пари. Кожний з цих ефектів характеризує взаємодію γ- квантів відповідно з атомами, електронами і ядрами. Унаслідок цього і повний лінійний коефіцієнт ослаблення дорівнює сумі трьох незалежних лінійних коефіцієнтів - фотоефекта μф, комптон-ефекту μк й ефекту утворення пара μп :
. (3.2.3.10)
Кожний із коефіцієнтів по-різному залежить від порядкового номера елемента в таблиці Менделєєва й енергії гамма-квантів.
Фотоефект. Фотоефектом називається така взаємодія γ- кванта з атомом, при якому γ - квант поглинається повністю (зникає), а з атома виривається електрон. Одна частина енергії γ- кванта Ej витрачається на розрив зв'язку електрона з ядром εе-, інша частина перетворюється в кінетичну енергію електрона Eе-:
. (3.2.3.11)
Перша особливість фотоефекта полягає в тому, що він відбувається тільки тоді, коли енергія γ - кванта більша за енергію зв'язку електрона в оболонці атома.
Фотоелектрон рухається майже перпендикулярно до напрямку поширення поглинутого γ- кванта (рис. 2.3). Рух фотоелектрона збігається з напрямком коливання електричної напруженості електромагнітного поля. Це показує, що фотоелектрон виривається з атома електричними силами.
Друга особливість фотоефекту - збільшення фотоелектричного поглинання γ- квантів з ростом енергії зв'язку електронів в атомі. Фотоефект практично не спостерігається на слабко зв'язаних електронах атома. При енергії γ- кванта >>εe- їх можна вважати вільними. Такий електрон не може поглинати γ- квант. Це випливає із законів збереження енергії й імпульсу:
. (3.2.3.12)
Фотоефект в основному відбувається на К - і L - оболонках атомів. Згідно з другим рівнянням вільний електрон, поглинувши γ- квант, повинен був би рухатися зі швидкістю, у два рази більшою за швидкість світла, що заперечує теорія відносності.
Лінійний коефіцієнт ослаблення фотоефекту μф різко зменшується із збільшенням енергії, і при енергіях понад 10 МеВ у свинці практично не виникають фотоелектрони.
Комптон-ефект. На слабко зв'язаних атомних електронах відбувається розсіювання γ-квантів, яке називається комптон- ефектом. Взаємодія γ-кванта з електроном у комптон-ефекті це пружне зіткнення двох кульок з масами і mе (див. рис.3.2.3).
У кожному пружному зіткненні γ - квант передає частину своєї енергії електрону і розсіюється. Оскільки розсіювання γ - квантів залежить від концентрації атомних електронів Ne~z, то і комптон - ефект визначається порядковим номером речовини z. Розсіювання γ – квантів відбувається головним чином на слабо зв’язаних електронах зовнішніх оболонок атомів.
Рис. 3.2.3
Лінійний коефіцієнт ослаблення комптон - ефекту μк пропорційний відношенню z/Ej. Тому зі збільшенням енергії доля розсіяних γ - квантів зменшується.
У свинці комптон - ефект починає переважати над фотоефектом в енергетичній області Ej > 0.5 МеВ (див. рис.2.4). Зменшення коефіцієнта μк із збільшенням енергії γ - квантів більш плавне, ніж коефіцієнта μф . Тому в області енергії Ej > 0.5 МеВ у свинці утвориться більше комптон - електронів, ніж фотоелектронів. Комптон - ефект стає незначним при енергіях понад 50 - 100 МеВ.
Утворення електрон-позитронних пар. Гамма - квант у полі ядра може утворити пару частинок: електрон і позитрон (див. рис.3.2.4). Вся енергія γ - кванта перетворюється в енергію спокою електрона й позитрона 2mеc2 і в кінетичні енергії цих частинок Eе і Eе-. Умова утворення електрон-позитронної пари знаходиться із закону збереження енергії:
hv =2mec2+Ee-+Ee+ . (3.2.3.13)
Пари частинок виникають тільки в тому випадку, якщо енергія γ - кванта перевищує подвоєну масу спокою електрона, рівну 1.02 МеВ. Поза полем ядра або, скажимо електрисним полем зарядженої частинки, γ - кванту заборонено перетворюватися в пару частинок, тому що в цьому випадку порушується закон збереження імпульсу. Це випливає, наприклад, із граничної умови утворення пари. Гамма - квант з енергією 1.02 МеВ енергетично може породити електрон і позитрон. Однак їх імпульс буде дорівнювати нулю, тоді як імпульс γ - кванта дорівнює hv/c, тобто не може дорівнювати нулю.
У полі ядра імпульс і енергія γ - кванта розподіляються між електроном, позитроном і ядром без порушень законів збереження енергії й імпульсу. Маса ядра незрівнянно більша маси електрона і позитрона, тому воно одержує дуже малу частку енергії. В цьому випадку вся енергія γ – кванта перетворюється в енергію електрона й позитрона. Лінійний коефіцієнт ослаблення, пов’язаний з утворенням електрон-позитронної пари μп пропорційний z2/lnEj . Цей ефект помітний у важких речовинах при великих енергіях. Коефіцієнт μп стає відмінним від нуля при граничній енергії Ej = 1.02 МеВ. Починаючи з енергії 10 МеВ основне поглинання γ - квантів відбувається в полі ядра. Повний лінійний коефіцієнт ослаблення μ як сума трьох коефіцієнтів із збільшенням енергії спочатку зменшується (див. рис.3.2.4) приймаючи мінімальне значення при енергії 3 МеВ, а потім збільшується.
Такий хід кривої пояснюється тим, що при низьких енергіях залежність μ(Ej) обумовлюється фотоефектом і комптон- ефектом, а вже при енергіях більших за 3 МеВ, у коефіцієнт μ основний внесок дає ефект утворення електрон-позитронної пари. Свинець найбільш прозорий для γ - квантів з енергією близько 3 МеВ.
Рис. 3.2.4
Взаємодія випромінювання з речовиною відбувається в одних ефектах поглинанням γ - квантів (фотоефект, утворення пар), в інших розсіюванням (комптон - ефект). Тому повний лінійний коефіцієнт часто поділяють на дві складові:
, (3.2.3.14)
де μа = μф +μп - лінійний коефіцієнт поглинання; μs = μк - лінійний коефіцієнт розсіювання.
Використовуючи лінійний коефіцієнт поглинання легко розрахувати енергію випромінювання Е, поглинену в одиниці об'єму речовини. Якщо потік моноенергетичних γ - квантів з енергією Ej дорівнює Ф, то:
. (3.2.3.15)
Процес перетворення g-кванта в електрон-позитронну пару записують так:
(3.2.3.16)
де - електрон; - позитрон.
Зворотний процес взаємодії позитрона й електрона називаються анігіляцією
(3.2.3.17)
При проходженні g- променів у речовині наряду із фотоефектом, комптонівським розсіюванням і утворенням електрон-позитронних пар, спостерігаються також резонансні явища. Якщо ядро опромінювати g- квантами з енергією, яка дорівнює різниці одного із збуджених нуклонних рівнів і основного енергетичного стану ядра, то спостерігається резонансне поглинання g-випромінювання ядрами. Ядра здатні поглинати енергію g-квантів в тих випадках, коли вони можуть випромінювати такі ж g-кванти у випадку збудженого стану. Це явище вперше спостерігав у 1958 році Мессбауер, яке на його честь було названо ефектом Мессбауера. Явище Мессбауера має досить широке використання в медичній діагностиці.
... селищ і сіл за шляхом вітрового перенесення аерозолів і попелу. Багато важливих проблем радіоекології горілого лісу ще потребують детального дослідження. РОЗДІЛ 5 АНАЛІЗ РАДІОАКТИВНОГО ЗАБРУДНЕННЯ ҐРУНТІВ ТА РОСЛИННОЇ ПРОДУКЦІЇ ЧЕРНІГІВСЬКОЇ ОБЛАСТІ Спостереження за щільністю забруднення ґрунту і рівнями забруднення рослинницької продукції радіонуклідами проводяться Чернігівським ...
... продукції повинно проводитися при умові повної радіаційної безпеки для людей, які працюють і проживають на такій території. 2. Організація технологічних процесів виробництва доброякісної продукції 2.1 Шляхи зменшення надходження радіонуклідів Основний внесок у рівень радіоактивного забруднення у перші дні і тижні після випадання радіоактивних залишків (у зв'язку з високою міграційною здатн ...
... випромінювання. Також при розгляді даного питання потрібно зробити наголос на практичній цінності цього питання та на формування вмінь та навичок безпечного поводження із радіоактивними речовинами. 3.3. Методика вивчення методів практичного виявлення та вимірювання радіоактивного випромінювання Вивчення методів практичного виявлення та вимірювання радіоактивного випромінювання передбачає ...
... померли, десятки тисяч стали інваліда ми. Півмільйона людей до цих пір проживає на забруднених територіях. [1] Розділ 2. Акумуляція радіонуклідів грибами в зонах радіоактивного забруднення 2.1 Особливості акумулювання радіонуклідів грибами Вивчення грибів у забруднених зонах проводиться з 1986 р. Встановлено, що за ступенем накопичення цезію гриби сильно відрізняються один від одного. Коеф ...
0 комментариев