4.2 Определение гидросопротивления межрубашечного зазора
В охлаждающем тракте камеры происходит два вида потерь:
Потери на трение жидкости о стенки канала.
Местные потери на скреплениях внешних и внутренних оболочек двигателя, штамповках, поворотах, плавных и внезапных сужениях (расширениях) тракта двигателя.
Потери на трение Н/м2 определяются формулой Дарси-Вейсбаха (4.3):
(4.3)
где - коэффициент потерь;
- длина участка;
м – эквивалентный диаметр канала;
- плотность охлаждающей жидкости на рассчитываемом участке, кг/м3. Определяем плотность охлаждающей жидкости, пользуясь данными приложения Б [1].
- скорость жидкости на участке, м/с.
Коэффициент потерь зависит от числа Рейнольдса:
, (4.4)
где , так как канал кольцевой.
Число Рейнольдса находим по формуле (4.5):
, (4.5)
где mf – массовый расход охладителя, кг/с;
- средний диаметр охлаждающей щели на рассчитываемом участке, м;
- динамическая вязкость воды для рассчитываемого участка, (). Находим значения динамической вязкости воды, пользуясь данными приложения WaterSteamPro при температуре насыщения
Первый участок: кг/м3; м; м/с.
();
;
;
Па.
Второй участок: кг/м3; м; м/с.
();
;
;
Па.
Третий участок: кг/м3; м; м/с.
();
;
;
Па.
Четвертый участок: кг/м3; м; м/с.
();
;
;
Па.
Пятый участок: кг/м3; м; м/с.
();
;
;
Па.
Шестой участок: кг/м3; м; м/с.
();
;
;
Па.
Седьмой участок: кг/м3; м; м/с.
();
;
;
Па.
Восьмой участок: кг/м3; м; м/с.
();
;
;
Па.
Девятый участок: кг/м3; м; м/с.
();
;
;
Па.
Десятый участок: кг/м3; м; м/с.
();
;
;
Па.
Десятый участок: кг/м3; м; м/с.
();
;
;
Па.
Местные потери , Н/м2 определяются формулой (4.6):
(4.6)
где - коэффициент местных потерь;
- скорость движения жидкости на участке, м/с;
- плотность жидкости, кг/м3.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
м/с; кг/м3.
Па.
Суммарные потери , Н/м2 вычисляются по формуле (4.7):
(4.7)
где - потери на трение на i –том участке, Па;
- потери на местные сопротивления на i –том участке, Па.
4.3 Расчет мощности насоса
Мощность насоса N, Вт, необходимая для прокачки жидкости, определяют по формуле (4.8):
(4.8)
где - суммарные потери на гидросопротивление межрубашечного зазора, Па; mf – расход охлаждающей жидкости, кг/с;
кг/м3 – среднее значение плотности жидкости между входом в канал и выходом;
- коэффициент полезного действия.
Вт.
Заключение
В данной курсовой работе, был проведен расчет конвективного охлаждающего сопла Лаваля . В результате расчета была определена величина теплового потока по длине сопла , равная на выходе 5230845 , в критическом сечении 525161 и на входе 2829790 . А также температурное поле стенки со стороны продукта сгорания для критического сечения составило 1120 К, для выхода 429 К , а на входе 705 К. Скорость движения охлаждающей жидкости составила в критическом сечении 45,635 м/с ,а на входе 18,693 м/с и на выходе 10,279 м/с Гидравлическое сопротивление межрубашечного зазора равно Па. Мощность насоса для прокачивания охлаждающей жидкости составило 50508,201Вт.
Также из графиков зависимости тепловых потоков и температур по длине сопла, мы можем сделать вывод, что своего максимального значения они достигают в критическом сечении сопла.
Список литературы
1. Методические указания по выполнению курсовой работы по дисциплине "Техническая термодинамика" для студентов специальности 140104 "Промышленная теплоэнергетика" очной форм обучения / В.Ю. Дубанин, С.В. Дахин, Н.Н. Кожухов, А.М. Наумов - Воронеж. ВГТУ: Воронеж, 2004. - 29с.
2. Кириллин В.А., Сычев В.В., Шейндлин А.Е.. Техническая термодинамика: учебник / 4-е изд., перераб. – М.: Энергоатомиздат, 1983. - 416 с.
3. Вукалович М.П., Новиков И.И. Термодинамика: учебное пособие для вузов. – М.:Машиностроение, 1972. – 672 с.
4. Сертифицированный набор программ для вычислений свойств воды и водяного пара, газов и смесей газов "WaterSteamPro"TM 6.0/ Орлов К.А., Александров А. А., Очков В. Ф. – М.: МЭИ, 2005.
5. Техническая термодинамика: учебник для вузов /Под ред.
В.И. Крутова - 2-е изд., перераб. и доп – М.: Высш. школа, 1981. - 439 с., ил.
... 4.1. Изучение влияния вида атмосферы и типа колец на длительность периода охлаждения На основе проведенных исследований, с помощью математической модели, где изучалось влияние вида атмосферы на длительность периода охлаждения, получены результаты которые представлены на рис. 6 -11. Кривые охлаждения садки колпаковой печи при различном содержании водорода в газе 1 - 5 % Н2; 2 - 25 % ...
... изменений Далее будет предложен и рассмотрен вариант усовершенствования системы охлаждения рассматриваемого в данной работе двигателя ЗМЗ-406 автомобилей ГАЗ 2705, 3221 «ГАЗЕЛЬ». Описание целей и элементов доработки системы охлаждения двигателя ЗМЗ-406 по пунктам приведены ниже. Основные элементы системы и режимы работы приведены на рис. 20…24. 1. Вместо вентилятора и гидронасоса с ...
... давление (избыточное): 13 кгс/см2 Толщина стенки барабана: 13 мм Тип горелки: ГМ-4,5 Расчетный расход топлива: 442 – 488 м3/ч 2 Тепловой расчет парового котла 2.1 Характеристика топлива Топливом для проектируемого котла является попутный газ, газопровода «Кумертау – Ишимбай – Магнитогорск». Расчетные характеристики газа на сухую массу принимаются по таблице 1. Таблица ...
... температуру при тепловоде а. с воздухоподогревателем , . б. без воздухоподогревателя , . Диаграмма потоков эксергии котельного агрегата Рис. 5. Диаграмма Грассмана – Шаргута для эксергетического баланса котельного агрегата 4. Тепловой расчет котла – утилизатора 4.1 Расход газов через котел – утилизатор , кДж/м3. где - объем газов; - часовой расход топлива без ...
0 комментариев