1. Электрические параметры*

Параметр

Единицы измерения

Исполнение

МФС12

МФС24

МФС48

Номинальная мощность Вт 150-200**
Номинальное напряжение В 16 32 64
Напряжение разомкнутой цепи В 20 40 80

* - Электрические параметры указаны для стандартных условий измерений.

** - Диапазон номинальных мощностей указан в зависимости от эффективности использованных СЭ.

2.  Геометрические данные, мм

1 Максимальная высота МФС 2100
2 Габариты рамы 1690x1620x30
В рабочем положении 1480x345x4
В транспортном положении 360x345x18
3.

Диапазон изменения углов
наклона рабочей поверхности МФС

40° - 75°
4.

Масса в зависимости от
материала опорной конструкции, кг

12-19
5.

Средняя продолжительность
подготовки к работе, мин

30
6. МФС работоспособна в условиях умеренно - холодного климата

при
температуре не ниже минус 30 °С.

7. Срок службы, лет не менее 7.
6.1.2.   Портативная система солнечного электропитания

Предназначена для питания бытовой и специальной электроаппаратуры постоянного тока мощностью до 60 Вт. Изготавливается на основе солнечных фотоэлектрических модулей (МФ). В состав системы входят: солнечная батарея, герметизированная аккумуляторная батарея (АБ) с контроллером заряда – разряда и устройством сигнализации о режиме работы системы (смонтированы в отдельном блоке), сетевое зарядное устройство (адаптер) и светильник с компактной люминесцентной лампой.

Технические характеристики

Номинальное рабочее напряжение, В 12 и 9
Максимально отдаваемая мощность, Вт 60
Электрическая емкость аккумулятора, А/ч 7,2 – 14,4
Максимально отдаваемая энергия аккумулятором, Вт/ч 28,8–57,6
Максимально допустимая глубина разряда аккумулятора,  30
Максимальный зарядный ток, А 0,7 – 1,4
Максимальное напряжение при зарядке, В 14,4
Минимальное допустимое напряжение на аккумуляторе, В 11,5
Мощность светильника с компактной люминесцентной лампой, Вт 7
Габаритные размеры, мм

256 258 98

Масса, кг 3,2

 

Особенности системы:

·  Аккумулирование энергии, поступающей от различных источников, включая солнечные и термоэлектрические батареи, сетевого зарядного устройства.

·  Технологичность, простота сборки и эксплуатации осуществляется благодаря применению электрических разъемов.

·  Небольшой вес и компактность.

6.1.3.   Солнечная система автономного освещения

Предназначена для освещения внутри и снаружи зданий и улиц без использования традиционных источников электропитания (склад пожароопасных и взрывчатых веществ, места отдыха и т.п.).

Электропитание осуществляется от солнечной батареи и аккумуляторной батареи.

Особенности:

Ø  работоспособность в условиях минусовой температуры (до20 С),

Ø  широкий диапазон программирования рабочего режима,

Ø  большой срок эксплуатации без обслуживания (до 5 лет).

1
2
3
4
7
6
 
 
 
 
5
 

 


1 – фотоэлектрический модуль;

 2 – люминесцентный светильник;

3 – опора;

 4 – гравий;

5 – аккумуляторная батарея;

6 – бетонный фундамент;

7 – грунт

6.1.4.   Солнечная водоподъемная установка

Предназначена для подъема воды из водоисточников с глубиной залегания воды до 20 м. Установка применяется  для водоснабжения садово-огородных и дачных участков, приусадебных и фермерских хозяйств, отгонных пастбищ и других объектов.

Состав и параметры комплекта

Солнечная батарея

Число модулей типа МФ36/4-С, шт.  2

Мощность, Вт  60

Габаритные размеры, мм  90096030

Масса, кг 11

Контроллер

Мощность выходная, Вт  250

Напряжение, В  12

Габаритные размеры, мм  20020080

Масса, кг  1,0

Аккумуляторная батарея

Количество, шт  1

Напряжение, В  12

Емкость, Ач  90

Тип  автомобильный

Масса, кг  34

Инвертор напряжения

Напряжение входа, В  12

Напряжение выхода, В   220

Мощность, Вт   600

Масса, кг   2,2

Водяной насос (вибрационный)

Мощность, Вт   200

Производительность, л/ч   300

Номинальная высота подъема, м   20

Максимальная высота подъема, м   40

Масса, кг  3,5

Водяной шланг

Диаметр, мм   19

Длина, м   25

Масса, кг 10

6.1.5.  Энергосберегающие вакуумные стеклопакеты

Предназначены для герметизации солнечных фотоэлектрических элементов при изготовлении солнечных модулей и создания теплосберегающих прозрачных экранов в конструкциях зданий и теплиц в виде различных стеклянных покрытий (оконные проемы, лоджии, зимние сады, оранжереи и т.п.)

Использование вакуумных паяных стеклопакетов позволяет в значительной мере решить проблемы энергосбережения.

Стандартные стеклопакеты состоят из двух или трех листов стекла, склеенных между собой с помощью специальной рамки. Такие стеклопакеты заполнены инертным газом и снабжены поглотителями влаги для предупреждения запотевания и замерзания стекла.

ВИЭСХом совместно с предприятиями электронной промышленности разработаны принципиально новые вакуумные стеклопакеты, обладающие уникальными свойствами. В результате срок службы, определяемый ресурсом сохранения герметичности, составляет 4050 лет.

Воздух (или инертный газ) в пространстве между стеклами заменен на вакуум, что улучшило теплоизолирующие и шумопоглощающие свойства. В таблице представлены теплоизолирующие свойства вакуумных стеклопакетов. При наличии специального покрытия на стеклах сопротивление теплопередачи может быть увеличено в 10 раз по сравнению с одинарным остеклением.

Сопротивление теплопередачи прозрачных ограждений зданий, теплиц и солнечных установок

Наименование Толщина,мм

Сопротивление

теплопередачи,

м2°С/Вт

Один лист стекла 6 0,17
Два листа стекла с зазором 16 мм 30 0,37
Вакуумный стеклопакет 6 0,44

Вакуумный стеклопакет

со спецпокрытием на одном стекле

6 0,85

Вакуумный стеклопакет

со спецпокрытием на двух стеклах

6 1,2
Двойной вакуумный стеклопакет со спецпокрытием на двух стеклах 12 2,0
Кирпичная стена в  2,5 кирпича 64 1,2

Высокая долговечность и прекрасные теплоизолирующие свойства получены при толщине вакуумного зазора 40 мкм и толщине стеклопакета 45 мм. Если в жилом доме двойные оконные рамы с толщиной стекла 5 мм, то при замене стекла на стеклопакеты толщиной 5 мм используются те же оконные рамы. Теплоизолирующие свойства окна улучшатся в 510 раз и будут такими же, как у кирпичной стены толщиной 0,51 м. Это самый экономичный метод повышения комфортности жилого помещения, так как не требует замены рам. Минимальная стоимость стеклопакета толщиной 5 мм составляет 1000 руб./м2.

При строительстве теплицы или зимнего сада из вакуумных стеклопакетов затраты энергии на отопление снизятся на 90%. Солнечные установки с вакуумными стеклопакетами (см. рисунок) будут нагревать воду не до 60°С, а до 90°С, т. е. они из установок для горячего водоснабжения переходят в разряд установок для отопления зданий. Новые технологии дают простор для фантазии архитекторов и строителей. Представьте себе обычный теплый дом с кирпичными стенами толщиной 1 м и такой же теплый дом с толщиной стен 10 мм, выполненных из вакуумных стеклопакетов.

Конструкция стеклопакетов защищена свидетельствами на полезную модель и двумя патентами на изобретения.

Технология изготовления имеет ноу-хау.

6.2. Солнечная энергия в Крыму

В Крыму наблюдается также наибольшее число часов солнечного сияния в течение года (2300-2400 часов в год) , что создает энергетически благоприятную и экономически выгодную ситуацию для широкого практического использования солнечной энергии.

В то же время, источник имеет довольно низкую плотность (для Крыма до 5 ГДж на 1 м 2 горизонтальной поверхности) и подвержен значительным колебаниям в течение суток и года в зависимости от погодных условий, что требует принятия дополнительных технических условий по аккумулированию энергии.

Основными технологическими решениями по использованию энергии являются: превращение солнечной энергии в электрическую и получение тепловой энергии для целей теплоснабжения зданий.

Прямое использование солнечной энергии в условиях Крыма, для выработки в настоящее время электроэнергии, требует больших капитальных вложений и дополнительных научно-технических проработок. В 1986 г. вблизи г. Щелкино построена первая в мире солнечная электростанция (СЭС-5) мощностью 5 тыс. кВт. К 1994 г. она выработала около 2 млн. кВт. час электроэнергии. Эксперимент с СЭС показал реальность преобразования солнечной энергии в электрическую, но стоимость отпускаемой электроэнергии оказалась слишком высокой, что в условиях рыночной экономики является малоперспективным.

В настоящее время ПЭО "Крымэнерго" обосновало применение в Крыму солнечно-топливных электростанций, являющихся СЭС второго поколения с более высокими технико-экономическими показателями. Такую электростанцию планируется построить в Евпатории. Сегодня солнечная энергетика получила широкое развитие в мире. Мировым лидером по строительству СЭС является американско-израильская фирма "Луз", сооружающая станции мощностью 30-80 МВт, на которых используется принципиально новая технология с параболоциливдрическими концентратами солнечного излучения. Себестоимость вырабатываемой ими электроэнергии ниже, чем на атомных электростанциях. Перспективность применения фотоэлектрического метода преобразования солнечной энергии обусловлено его максимальной экологической чистотой преобразования, значительным сроком службы фотоэлементов и малыми затратами на их обслуживание. При этом простота обслуживания, небольшая масса, высокая надежность и стабильность фотоэлектропреобразователей делает их привлекательными для широкого использования в Крыму.

Основными задачами по широкому внедрению фотоэлектрических источников питания являются:

Ø  разработка научно-технических решений по повышению КПД фотоэлементов;

Ø  применение высокоэффективных фотоэлементов с использованием концентраторов солнечного излучения.

Техническая подготовленность отечественных предприятий на Украине позволяет освоить производство фотоэлектрических источников питания на суммарную установленную мощность до 100 МВт.

Мощность фотоэлектрических преобразователей солнечной энергии, внедряемых в Крыму к 2010 г., может составить до 3,0 МВт, что может обеспечить экономию топлива до 1,7 тыс т у. т. в автономных системах энергообеспечения.

Солнечная энергия в Крыму может использоваться не только для производства электроэнергии, но и тепла. Это реально при широком распространении в республике солнечных батарей (коллекторов) , легко сооружаемых и высокорентабельных. Разработкой и изготовлением солнечных коллекторов новой конструкции занимаются ГНПП “Гелиотерн” , “Крымэнерго” (пос. Утес) и трест “Южстальмонтаж” (г. Симферополь) . Горячее водоснабжение от солнца (коллекторов) сбережет дефицитное органическое топливо и не будет загрязнять воздушный бассейн. В настоящий же период 80% тепловой энергии производят более трех тысяч котельных, которые не только сжигают огромное количество органического топлива, по и существенно повышают концентрацию газопылевых загрязнений воздушной среды.

Для успешного внедрения экологически чистых систем солнечного теплоснабжения, повышения надежности их функционирования необходимо:

Ø  разработать и внедрить в производство на предприятиях Крыма различные виды энергетически эффективных солнечных коллекторов с улучшенными теплотехническими характеристиками, отвечающими современному зарубежному уровню, в частности: с селективным покрытием, вакуумные, пластмассовые для бытовых нужд, воздушные для нужд сельского хозяйства;

Ø  довести выпуск солнечных коллекторов к 2010 г. до 3-5 тыс. штук в год, что эквивалентно замещению годового использования топлива - 0,35 - 0,65 тыс. у.е. т. ;

Ø  увеличить в 2-3 раза выпуск высокоэффективных теплообменников для солнечных установок;

Ø  обеспечить достаточную постановку запорной и регулирующей арматуры, приборов для автоматизации технологических процессов.

Реализация этих предложений позволяет создать в Крыму собственную промышленную индустрию по выпуску основного специализированного оборудования для комплектации и строительства установок по использованию солнечной энергии.

Наиболее перспективными направлениями солнечного теплоснабжения на ближайшую перспективу (до 2010 г.) являются:

Ø  солнечное горячее водоснабжение индивидуальных и коммунальных потребителей сезонных объектов (детские, туристические, спортивные лагеря, объекты санаторно-курортной сферы, жилых и общественных зданий) ;

Ø  пассивное солнечное отопление малоэтажных жилых домов и промышленных сооружений, главным образом, в сельской местности и Южном берегу Крыма;

Ø  использование солнечной энергии в различных сельскохозяйственных производствах (растениеводство в закрытых грунтах, сушка зерна, табака и других сельхозпродуктов и материалов) ;

Ø  применение низкопотенциальной теплоты, полученной на солнечных установках, для разнообразных технологических процессов в различных отраслях промышленности (для пропарки при производстве железобетонных изделий и др. целей) .

Экономия топлива на отопительных котельных от внедрения этих установок может составить к 2000 г. - 4,01 тыс. т у. т., за период 2001-2005 г. - 6,5 тыс. т у. т. и за период с 2006 по 2010 г. - 11,66 тыс у. т.

Дополнительная выработка электроэнергии от работы солнечных фотоэлектрических преобразователей батарей может составить к 2000 г. - 0,30 млн. кВт.ч., за период с 2001 по 2005 г. - 0,72 млн. кВт.ч., за период с 2006 по 2010 гг. - 1,8 млн. кВт.ч.

Для реализации программы к 2010 г. промышленность Крыма должна обеспечить производство солнечных коллекторов до 3,5 - 4,0 тыс. штук ежегодно.

6.3.  Крымская солнечная электростанция

Проекты электростанции, где турбину будет вращать пар, полу­ченный из нагретой солнечными лучами воды, разрабатывается сей­час в самых различных странах. В СССР экспериментальная солнеч­ная электростанция такого типа по­строена на солнечном побережье Крыма, вблизи Керчи. Место для станции выбрано не случайно— ведь в этом районе солнце светит почти две тысячи часов в год. Кро­ме того, немаловажно и то, что земли здесь солончаковые, не при­годные для сельского хозяйства, а станция занимает довольно боль­шую площадь.

Станция представляет собой не­обычное и впечатляющее соору­жение. На огромной, высотой более восьмидесяти метров, башне уста­новлен солнечный котел парогене­ратора. А вокруг башни на обшир­ной площадке радиусом более полукилометра концентрическими кругами располагаются гелиоста­ты —сложные сооружения, серд­цем каждого из которых является громадное зеркало, площадью бо­лее 25 квадратных метров. Очень непростую задачу пришлось решать проектировщикам станции — ведь все гелиостаты (а их очень мно­го — 1600!) нужно было располо­жить так, чтобы при любом положении солнца на небе ни один из них не оказался в тени, а отбра­сываемый каждым из них солнеч­ный зайчик попал бы точно в вер­шину башни, где расположен паро­вой котел (поэтому башня и сдела­на такой высокой). Каждый гелио­стат оснащен специальным устрой­ством для поворота зеркала. Зерка­ла должны двигаться непрерывно вслед за солнцем — ведь оно все время перемещается, значит, зай­чик может сместиться, не попасть на стенку котла, а это сразу же скажется на работе станции. Еще больше усложняет работу станции то, что траектории движения гелио­статов каждый день меняются: Зем­ля движется по орбите и Солнце ежедневно чуть-чуть меняет свой маршрут по небу. Поэтому управле­ние движением гелиостатов пору­чено электронно-вычислительной машине — только ее бездонная па­мять способна вместить в себя за­ранее рассчитанные траектории

движения всех зеркал.

Под действием сконцентриро­ванного гелиостатами солнечного тепла вода в парогенераторе нагре­вается до температуры 250 гра­дусов и превращается в пар вы­сокого давления. Пар приводит во вращение турбину, та — электро­генератор, и в энергетическую сис­тему Крыма вливается новый ру­чеек энергии, рожденной солнцем. Выработка энергии не прекратится, если солнце будет закрыто тучами, и даже ночью. На выручку придут тепловые аккумуляторы, установ­ленные у подножия башни. Излиш­ки горячей воды в солнечные дни направляются в специальные хра­нилища и будут использоваться в то время, когда солнца нет.

Мощность этой экспери-менталь­ной электростан-ции относительно неве-лика — всего 5 тысяч киловатт. Но вспомним: именно такой была мощность первой атомной электро­станции, родона-чальницы могучей атомной энергетики. Да и выработ­ка энергии отнюдь не самая глав­ная задача первой солнечной эле­ктростанции — она потому и назы­вается экспериментальной, что с ее помощью ученым предстоит найти решения очень сложных задач эксплуатации таких станций. А та­ких задач возникает немало. Как, например, защитить зеркала от за­грязнения? Ведь на них оседает пыль, от дождей остаются потеки, а это сразу же снизит мощность станции. Оказалось даже, что не вся­кая вода годится для мытья зеркал. Пришлось изобрести специальный моечный агрегат, который следит за чистотой гелиостатов. На экспе­риментальной станции сдают экза­мен на работоспособность устрой­ства для концентрации солнечных лучей, их сложнейшее оборудова­ние. Но и самый длинный путь на­чинается с первого шага. Этот шаг на пути получения значительных количеств электроэнергии с по­мощью солнца и позволит сде­лать Крымская экспериментальная солнечная электростанция.

Советские специалисты готовят­ся сделать и следующий шаг. Спроектирована крупнейшая в мире солнечная электростанция мощ­ностью 320 тысяч киловатт. Место для нее выбрано в Узбекистане, в Каршинской степи, вблизи молодо­го целинного города Талимарджана. В этом краю солнце светит не ме­нее щедро, чем в Крыму. По прин­ципу действия эта станция не отли­чается от Крымской, но все ее сооружения значительно масштаб­нее. Котел будет располагаться на двухсотметровой высоте, а вокруг башни на много гектаров раскинет­ся гелиостатное поле. Блестящие зеркала (72 тысячи!), повинуясь сигналам ЭВМ, сконцентрируют на поверхности котла солнечные лучи, перегретый пар закрутит турбину, генератор даст ток 320 тысяч кило­ватт—это уже большая мощность, и длительное ненастье, препят­ствующее выработке энергии на солнечной электростанции, может существенно сказаться на потреби­телях. Поэтому в проекте станции предусмотрен и обычный паровой котел, использующий природный газ. Если пасмурная погода затянет­ся надолго, на турбину подадут пар из другого, обычного котла.


7.  НЕКОТОРЫЕ МИРОВЫЕ ИЗОБРЕТЕНИЯ 7.1. Солнечная кухня

Помните хмурую личность - Сундукова, из кинофильма "Три плюс два" и его персональную солнечную кухню? Впечатляет?

По своей сути солнечная кухня - это бытовая гелиоустановка, предназначенная для приготовления пищи.

Ее основной элемент - гелиоконцентратор, (чаще всего в виде отражателя параболоидной формы), фокусирующий солнечные лучи на поверхности приёмника излучения (кастрюли, кипятильника и т.п.).

Для легкости применения, гелиоконцентраторы для солнечной кухни имеют невысокую точность фокусирования. Обычно концентрация солнечной энергии (относительное увеличение плотности лучистого потока) не превосходит 250, т.к. большая плотность энергии на поверхности приёмника делала бы солнечную кухню неудобной в обращении.  Вращение гелиоконцентратора  вслед за видимым движением Солнца осуществляется вручную. КПД достигает 55-60%.

Солнечная кухня незаменима в сельской местности и удаленных местах, где нет центрального газоснабжения. Она позволяет приготовить пищу, не разжигая костер. Не нужно использовать уголь и дрова, следить за очагом и беспокоиться о том, что дети могут пострадать от огня.
Например, всего за 15 минут на солнечной кухне можно вскипятить трехлитровый металлический чайник воды, сварить суп.

Так же, солнечные кухни очень удобны в походных условиях. После использования "зонтик" можно сложить и положить в багажник машины, нести в руках.

Использование солнечных кухонь сохраняет время, экономит деньги и "персональную" энергию, которую Вы можете с радостью потратить на своих близких.

7.2. Солнечная стена

Сразу скажем, новация появилась не вчера и уже успела завоевать энное число благодарных поклонников, равно как и ряд наград от разных журналов и организаций. Однако система  периодически всплывает на ресурсах, посвящённых "зелёным" технологиям, и мы не могли пройти мимо - уж больно изящно работает эта вещица, стоящая, кстати, не таких уж больших денег, в сравнении с традиционными системами поддержания "правильной" температуры в зданиях, да и устроенная довольно просто.

Предназначена, главным образом, для офисных и промышленных сооружений среднего и большого "калибра", но, очевидно, не откажется поработать и в крупном коттедже.

Система называется "Солнечная стена" (Solarwall), и производится она транснациональной компанией Conserval Engineering с головным офисом в Канаде.

"Солнечная стена" - это вторая стена, устанавливаемая с зазором примерно в несколько сантиметров поверх южной стены здания. Этот дополнительный слой представляет собой тонкие панели из алюминия или стали, с чёрным покрытием и множеством маленьких отверстий по всей площади.

Верхняя часть образовавшейся между стенами полости соединяется с вентилятором, подающим воздух с улицы в здание.

В осенне-зимний период, когда есть солнце (а так бывает, во всяком случае, в США и Канаде - нередко), чёрные пластины "Солнечной стены" заметно нагреваются. Воздух с улицы втягивается в отверстия, нагревается в промежутке между стенами и попадает в помещение.

Более того, уходящее через настоящую стену (кирпич или та же сталь) здания, ту самую стену поверх которой смонтирована стена "Солнечная", внутреннее тепло прогретого помещения здесь не пропадает зря, а помогает нагревать поступающий внутрь свежий воздух.

Так существенно снижается необходимая мощность штатной системы обогрева здания.

Летом же, как ни странно, эта чёрная стена помогает зданию охлаждаться. Только теперь в системе переключаются заслонки, и нагретый в фальш-стене воздух сразу выбрасывается наружу, а вот его восходящий поток помогает засасывать в здание, через другие каналы, воздух с улицы. И та же стена мешает южному фасаду здания перегреваться.

Так снижается требуемая мощность штатной системы кондиционирования.

 Установленные на ряде промышленных сооружений "Солнечные стены" экономят теперь своим владельцам тысячи долларов в год, а планете - тонны и тонны топлива для электростанций.

7.3. Солнечные аксессуары

Преобразование солнечной энергии в электрическую осуществляется при помощи фотоэлектрических модулей. Материалом для них служит один из самых распространенных в земной коре элементов - кремний, а "топливом" - солнечные лучи. Сегодня солнечные батареи вошли в повседневный быт многих миллионов людей прочно и навсегда. Они идеальны для путешествий и в вариантах мобильного использования.

Как известно, бывают такие моменты, когда зубная щетка недоступна. Но с этой проблемой достаточно легко справиться. А вот что делать, когда вам необходимо срочно зарядить батареи вашего мобильника или цифрового фотоаппарата, а ближайшая розетка находится от вас на расстоянии, скажем, километров 20, а то и больше?. Как вариант, можно приобрести дополнительные аккумуляторы для всех ваших устройств. Но есть более изящный выход – универсальные зарядные устройства, позволяющие получать электричество практически из воздуха.

Устройства представляют собой батарею солнечных элементов, монтированных в корпус, напоминающий записную книжку. Помимо рабочей поверхности, в корпусе уместился аккумулятор на 700 мАч или на 600 мАч, который может питать внешнее устройство, когда солнечного света нет. Зарядить аккумулятор можно как от солнца, так и от сети с помощью адаптера. Вы легко можете зарядить свой мобильный телефон или фотоаппарат!

Разместив солнечные батареи на поверхности походного рюкзака, производители солар-продукции, предлагают Вам идеальный вариант комфортной мини-электростанции, от которой можно зарядить радио, мобильный телефон или фотоаппарат.

Но пожалуй, наибольшее распространение получили калькуляторы и часы на солнечных батареях - эти устройства потребляют совсем небольшое количество энергии и та батарея, которую можно уместить на корпусе имеет достаточную

Если любите походы и ведете активный образ жизни, или Вам просто нравиться слушать радио, то радиоприемник, работающий на солнечных батареях, создан специально для Вас. При солнечной погоде, Вы будете слушать его весь день. В пасмурную погоду, после 12-ти часов подзарядки радио может работать 6-8 часов. Обычно "походные" приемники включают: компас, термометр, сирену, часы, будильник и фонарик. Компактное радио, с наушниками, можно использовать каждый день.

Существует достаточно широкий выбор игрушек и сувениров на солнечных батареях. Солар-игрушки интресны для ребенка не только своим ярким внешним видом, но и не традиционным принципом работы. Их легко можно взять с собой на дачу в летний день и ребенку будет чем заняться.


7.4. Солнечные стирлинги

Прежде, чем рассказать о проекте американских энергетиков, нужно сказать пару слов о стирлинге - двигателе. В отличие от дизеля и бензинового ДВС это - двигатель внешнего сгорания. Его тепловой замкнутый цикл кардинально отличается от циклов Отто или Дизеля.

Так, нагрев рабочего газа в цилиндре стирлинга (при подводе тепла извне) происходит при практически постоянном объёме, затем идёт расширение при почти постоянной температуре, потом газ перемещается отдельным поршнем-вытеснителем в холодную зону, где происходит охлаждение при почти постоянном объёме.

Далее следует сжатие при постоянной температуре. Затем вытеснитель загоняет тот же газ в горячую область, и всё начинается сначала.

При этом в канале между горячей и холодной областью часто ставят пористый теплорегенератор, который ускоряет охлаждение и нагрев газа при его движении в ту или иную сторону.

Разумеется, машина, построенная непосредственно мистером Стирлингом, отличается от современных стирлингов так же сильно, как первые дизели, созданные самим Рудольфом Дизелем от дизельных моторов XXI века. Но принцип остался тем же.

 Теоретически КПД Стирлинга может совпадать с физическим пределом, определяемым разностью температур "печки" и "холодильника", да и на практике можно получить от стирлингов КПД порядка 70%, что раза в два выше, чем у хорошего дизеля.

Почему же стирлинг "не пошёл"? Увы, чтобы получить от него сколь-нибудь приемлемую удельную мощность (по отношению к его размерам и весу), как и выжать весь потенциал цикла по КПД, нужно идти на ряд технологических ухищрений, которые сильно удорожают конструкцию.

У стирлинга есть сильные козыри. Это не только КПД, но и почти полное отсутствие шума (никаких взрывов) и возможность работать на любом топливе - от бензина и солярки, до угля, Солнца или атомной энергии.

Собственно, всё, что требуется - это нагревать чем-то определённый узел этого мотора - верхнюю часть закрытого цилиндра.

Потому стирлинги нашли ограниченное применение (на некоторых подлодках или как вспомогательные генераторы).

Очевидно, преимущества этих двигателей становятся особо выгодными при стационарном использовании, когда собственный вес двигателя не важен. Например, при выработке энергии из солнечного излучения.

Об этом инженеры думали давно, да и кое-какие установки такого типа уже строились. Но, кажется, никто ещё не осмеливался строить солнечные фермы на двигателях стирлинга, чтобы производить электроэнергию в хоть каких-то промышленных масштабах.

И вот американская национальная лаборатория Сандия (Sandia National Laboratories), один из крупнейших научных центров, специализирующийся на энергетике, объединила свои усилия с американской компанией Stirling Energy Systems, и начала строить первые "солнечные фермы", основанные на двигателях Стирлинга

Собственно, солнечные стирлинги были разработаны компанией Stirling Energy Systems, а учёные из лаборатории Сандия помогают их совершенствовать.

Было испытано шесть солнечных генераторов, которые обеспечивают электричеством боле 40 домов.

Пять новых систем смонтированы в испытательном центре Сандии. Они присоединяются к первому такому опытному образцу, который был создан в 2004 году, и вместе образуют электростанцию с выходной электрической мощностью 150 киловатт (в дневные часы, конечно).

Солнечный свет концентрируется на двигателях с помощью зеркал, каждое из которых пос-троено из 82 отдельных сек-ций.

"Это будет наибольшая группа солнечных ус-тановок стир-линга в мире, - утверждает лидер проекта со стороны Сандии Чак Андрака (Chuck Andraka). - В конечном счёте, проект предполагает создание 20 тысяч систем, которые будут размещены на нескольких солнечных фермах и будут поставлять электричество юго-западным распределительным компаниям".

Каждая установка работает автоматически. Без вмешательства оператора или даже присутствия человека. Она запускается каждое утро на рассвете и работает в течение дня, отслеживая солнце и переходя "ко сну" на закате.

Параметры системы могут быть проверены и изменены через Интернет. Исследователи хотят заставить шесть систем плодотворно сотрудничать с тем же самым уровнем автоматизации.

Сам двигатель - замкнутая система, заполненная водородом, который и циркулирует в ней, нагреваясь и охлаждаясь. Изменение в его давлении двигает поршни, которые вращают вал, связанный с электрогенератором.

Полный КПД, рассчитанный от солнечного света и до электричества в выходных проводах, составляет 30%, что немного выше, чем у обычных солнечных батарей.

Стоимость каждой установки - приблизительно $150 тысяч. При серийном выпуске цена на эти стирлинги может быть снижена более чем втрое, что доведёт стоимость электричества, произведённого таким способом, до уровня классических топливных технологий.

Большая сложность самих стирлингов - это подход при проектировании и постройке. Здесь требуется более, так сказать, деликатный подход , чем в случае с дизелем, и он отпугивает многих. Может, и зря. По расчётам авторов проекта, в теории одна ферма солнечных стирлингов, под которую отвели бы территорию всего-то 160 х 160 километров на юге США, покрыла полностью всю потребность страны в электроэнергии.

Но почему-то когда люди говорят об альтернативной энергетике, имеют в виду лишь солнечные батареи, ветрогенераторы, приливные и волновые станции, иногда - геотермальное тепло. Может пора рассмотреть и эту часть альтернативной энергетики?

7.5. Светильники на солнечных батареях

Еще недавно использование энергии солнца для ночного освещения улиц, парков, автострад было недоступно. Но прогресс не стоит на месте и на сегодняшний день существуют фотоэлектрические системы освещения территорий, основанные на принципе солнечных технологий.

Системы имеют автономное электроснабжение на базе солнечного модуля, что позволяет с наименьшими затратами решить проблему освещения территорий, не имеющих централизованного электроснабжения.

Принцип действия системы прост и надежен. В течении светлого времени суток, фотоэлектрический элемент, превращает солнечную энергию в электрическую и заряжает ею аккумуляторы. С наступлением темноты светильник автоматически включается и обеспечивает мягкое освещение до наступления рассвета.

Для зарядки аккумуляторов, не обязательны прямые солнечные лучи, солнечная батарея способна улавливать солнечную энергию даже в пасмурную погоду и зимнее время суток.

Фотоэлектрическая система освещения состоит из:

1.  Фотоэлектрического модуля, который преобразует солнечный свет в электроэнергию.

2.  Аккумулятора-накопителя энергии. Используются герметичные, необслуживаемые аккумуляторы, срок службы которых в среднем от 5 до 15 лет, в зависимости от модели.

3.  Контроллера - оптимизатора зарядки/разрядки аккумулятора, помогающего продлить эксплуатационный период аккумулятора. Контроллер автоматически включает и выключает освещение на рассвете и закате, но так же имеет в комплекте таймер для настройки режима включение/выключение в заданное время.


Информация о работе «Солнечная энергетика»
Раздел: Физика
Количество знаков с пробелами: 178236
Количество таблиц: 13
Количество изображений: 9

Похожие работы

Скачать
44807
2
2

... . Солнечные электростанции. Солнечные батареи. Широкий спектр применения солнечных батарей. Энергопассивные дома. Город «Солнца». Ограничение масштабов использования фотоэлектрических солнечных батарей. Главная помеха для развития солнечной энергетики – земная атмосфера. Идея космической СЭС. Перспективы развития солнечной энергетики в России. 2.2. Ветровая энергия Ветер служит человеку. ...

Скачать
20456
1
0

... материалов, специфическая планировка помещения, размещение окон. 3) Непосредственные или «прямым» - системы, преобразовывающие солнечную энергию в ходе одного уровня или этапа. 4) «Непрямые» технологии - системы, процесс функционирования которых включает в себя многоуровневые преобразования и трансформации для получений требуемой формы энергии. Исходя из выше представленной классификации групп ...

Скачать
87142
4
4

... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...

Скачать
55087
0
4

... варианте при максимальном потреблении энергоресурсов в 2020 г. составят 99% от уровня соответствующих выбросов в 1990 г., а в 2030 г. превысят их на 3…4%.   Экологические проблемы развития электроэнергетики в РАО «ЕЭС России» Основными факторами, определяющими экологическую нагрузку при производстве электрической энергии, являются: Наличие высокого уровня валовых выбросов вредных веществ в ...

0 комментариев


Наверх