8. Сверхбыстродействующие системы. Управляемый термоядерный синтез с инерциальным удержанием

Трудности, связанные с магнитным удержанием плазмы, можно в принципе обойти, если сжигать ядерное горючее за чрезвычайно малые времена, когда нагретое вещество не успевает разлететься из зоны реакции. Согласно критерию Лоусона, полезная энергия при таком способе сжигания может быть получена лишь при очень высокой плотности рабочего вещества. Чтобы избежать ситуации термоядерного взрыва большой мощности, нужно использовать очень малые порции горючего, исходное термоядерное топливо должно иметь вид небольших крупинок (диаметром 1–2 мм), приготовленных из смеси дейтерия и трития, впрыскиваемых в реактор перед каждым его рабочим тактом. Главная проблема здесь заключается в подведении необходимой энергии для разогрева крупинки горючего. В настоящая время (1976) решение этой проблемы возлагается на применение лазерных лучей или интенсивных электронных пучков. Исследования в области Управляемый термоядерный синтез с применением лазерного нагрева были начаты в 1964; использование электронных пучков находится на более ранней стадии изучения – здесь выполнены пока сравнительно немногочисленные эксперименты. Оценки показывают, что выражение для энергии W, которую необходимо подводить к установке для обеспечения работы реактора, имеет вид:

 дж

Здесь h – выражение общего вида для кпд устройства и a – коэффициент сжатия мишени. Как показывает написанное равенство, даже при самых оптимистических допущениях относительно возможного значения h величина W при a = 1 получается несоразмерно большой. Поэтому только в сочетании с резким увеличением плотности мишени (примерно в 104 раз) по сравнению с исходной плотностью твёрдой (d, t) мишени можно подойти к приемлемым значениям W. Быстрое нагревание мишени сопровождается испарением её поверхностных слоев и реактивным сжатием внутренних зон. Если подводимая мощность определённым образом программирована во времени, то, как показывают вычисления, можно рассчитывать на достижение указанных коэффициентов сжатия. Другая возможность состоит в программировании радиального распределения плотности мишени. В обоих случаях необходимая энергия снижается до 106 дж, что лежит в пределах технической осуществимости, учитывая стремительный прогресс лазерных устройств.


9. Трудности и перспективы

Исследования в области Управляемый термоядерный синтез сталкиваются с большими трудностями как чисто физического, так и технического характера. К первым относится уже упомянутая проблема устойчивости горячей плазмы, помещенной в магнитную ловушку. Правда, применение сильных магнитных полей специальной конфигурации подавляет потоки частиц, покидающих зону реакции, и позволяет получить в ряде случаев достаточно устойчивые плазменные образования. Электромагнитное излучение при используемых значениях n и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто водородной плазмы эти энергетические потери определяются только тормозным излучением электронов и в случая (d, t) реакций перекрываются ядерным энерговыделением уже при температурах выше 4·107 К. Вторая фундаментальная трудность связана с проблемой примесей. Даже малая добавка чужеродных атомов с большим Z, которые при рассматриваемых температурах находятся в сильно ионизованном состоянии, приводит к резкому увеличению интенсивности сплошного спектра, к появлению линейчатого спектра и возрастанию энергетических потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых металлов в качестве материала диафрагм, применение специальных устройств для улавливания чужеродных атомов и т.д.), чтобы содержание примесей в плазме оставалось ниже допустимого уровня. Точнее – "летальная" концентрация, исключающая возможность протекания термоядерных реакций, например для примеси вольфрама или молибдена, составляет десятые доли процента.

Огромное значение, которое придаётся исследованиям в области Управляемый термоядерный синтез, объясняется рядом причин. Нарастающее загрязнение окружающей среды настоятельно требует перевода промышленного производства планеты на замкнутый цикл, когда возникает минимум отходов. Но подобная реконструкция промышленности неизбежно связана с резким возрастанием энергопотребления. Между тем ресурсы минерального топлива ограничены и при сохранении существующих темпов развития энергетики будут исчерпаны на протяжении ближайших десятилетий (нефть, горючие газы) или столетий (уголь). Конечно, наилучшим вариантом было бы использование солнечной энергии, но низкая плотность мощности падающего излучения сильно затрудняет радикальное решение этой проблемы. Переход энергетики в глобальном масштабе на ядерные реакторы деления ставит сложные проблемы захоронения огромных радиоактивных отходов (альтернатива: выброс радиоактивных отходов в космос). По имеющимся оценкам, радиоактивная опасность установок на Управляемый термоядерный синтез должна оказаться на три порядка величины ниже, чем у реакторов деления. Если говорить о далёких прогнозах, то оптимум следует искать в сочетании солнечной энергетики и Управляемый термоядерный синтез.

 


Список литературы

 

1.  http://ru.wikipedia.org/wiki/Управляемый_термоядерный_синтез

2.  http://bse.sci-lib.com/article114313.html

3.  http://www.krugosvet.ru/enc/nauka_i_tehnika/energetika_i_stroitelstvo/YADERNI_SINTEZ.html

4.  Тамм И. Е., Теория магнитного термоядерного реактора, ч. 1, в сборнике: Физика плазмы и проблема управляемых термоядерных реакций, т. 1, М., 1958

5.  Сахаров А. Д., Теория магнитного термоядерного реактора, ч. 2


Информация о работе «Управляемый термоядерный синтез»
Раздел: Физика
Количество знаков с пробелами: 35807
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
19305
0
0

... энергии образования здесь выступает материя γ – частиц, полезность которой, кроме поражающего фактора, маловероятна. То есть конечным результатом программы создания управляемого термоядерного синтеза будет энергозатратный синтез гелия и γ – излучения. Иными словами, пытаться получить огромное количество энергии с помощью термоядерного синтеза гелия является несбыточной мечтой ученых ...

Скачать
32634
0
1

... с помощью инжекции нейтральных атомов. Как в токамаках, так и в пробкотронах для удержания плазмы необходимо очень сильное магнитное поле. Однако существуют направления решения проблемы термоядерного синтеза, при реализации которых отпадает необходимость создания сильных магнитных полей. Это так называемые лазерный синтез и синтез с помощью релятивистских электронных пучков. Суть этих решений ...

Скачать
21141
0
0

... экспериментального термоядерного реактора возглавляет Е.П.Велихов. США потратив 15 миллиардов долларов вышли из этого проекта, остальные 15 миллиардов уже потрачена международными научными организациями. 2. Технические , экологические и медицинские проблемы. При работе установок управляемого термоядерного синтеза (УТС). возникают нейтронные пучки и гамма излучение, а так же возникают ...

Скачать
27066
2
3

... секций, которые запол­нят различными стандартными блоками (модулями). Это позво­лит в случае необходимости сравнительно просто заменять от­дельные узлы с помощью специальных манипуляторов. 5. Термоядерные реакторы-токамаки и их характеристики: В таблице даны основные параметры токамаков: R и r - большой и малые радиусы плазмы, V - её объём, B - напряжённость магнитного поля, BV - ...

0 комментариев


Наверх