3. Краткая характеристика метода синтеза полимера и технических способов его осуществления
Гидрат целлюлозы получают из природной целлюлозы: осаждением из раствора; обработкой целлюлозы концентрированными (17—35%-ными) растворами щелочей и разложением образовавшейся щелочной целлюлозы; этерификацией целлюлозы и последующим омылением сложных эфиров; механическим размолом целлюлозы.
Процесс регенерации целлюлозы из раствора при добавлении кислоты в ее концентрированный медноаммиачный (т.е. содержащий сульфат меди и гидроксид аммония) водный раствор был описан англичанином Дж.Мерсером около 1844. Но первое промышленное применение этого метода, положившее начало промышленности медно-аммиачного волокна, приписывается Е.Швейцеру (1857), а дальнейшее его развитие – заслуга М.Крамера и И.Шлоссбергера (1858). И только в 1892 Кросс, Бевин и Бидл в Англии изобрели процесс получения вискозного волокна: вязкий (откуда название вискоза) водный раствор целлюлозы получался после обработки целлюлозы сначала крепким раствором едкого натра, что давало «натронную целлюлозу», а затем – дисульфидом углерода (CS2), в результате чего получался растворимый ксантогенат целлюлозы. При выдавливании струйки этого «прядильного» раствора через фильеру с малым круглым отверстием в кислотную ванну целлюлоза регенерировалась в форме вискозного волокна. При выдавливании раствора в такую же ванну через фильеру с узкой щелью получалась пленка, названная целлофаном. Ж.Бранденбергер, занимавшийся во Франции этой технологией с 1908 по 1912, первым запатентовал непрерывный процесс изготовления целлофана.
Часто при самых разнообразных условиях целлюлоза глубоко изменяется в своих физических свойствах, совершенно теряет эластичность, становится ломкой и при трении измельчается в порошок. Такого рода изменение замечается, например, при неправильно веденном процессе отбелки хлопчатобумажной пряжи, ткани или бумажной массы, при карбонизации смешанной ткани, а также, хотя и в меньшей степени, на белье, часто подвергавшемся стирке, на шторах, долго подвергавшихся действию света в сыром помещении, на плохо приготовленном растительном пергаменте в т. п. Вместе с тем давно уже замечено, что такое изменение растительных волокон в особенности легко происходит под влиянием сильных кислот. Ближайшее изучение этого изменения и условий, в которых оно происходит, составляет заслугу Амэ Жирара, который выяснил, что под влиянием кислот клетчатка переходит в "гидроцеллюлозу",
Образуется гидрат целлюлоза чрезвычайно легко и при разнообразных условиях. Жирар указал несколько простых и удобных методов ее приготовления. Один из них состоит в том, что клетчатку (удобнее брать в этом случае гигроскопическую вату) погружают в серную кислоту в 45°Бомэ и оставляют взаимодействовать 12 часов. По прошествии этого времени хлопок не изменяется по внешности, но после промывки и высушивания теряет эластичность и становится совершенно хрупким.
Аналогично серной, в известных условиях концентрации и температуры, действуют и другие минеральные кислоты. Так, при действии влажной газообразной соляной кисл. при 100°С на вату происходит быстрое образование гидрата целлюлозы. Небезынтересно при этом (сделанное тоже Жираром) наблюдение, что сухая НCl хлопка не изменяет. Очень демонстративно протекает эта реакция с соляной кислотой, если несколько изменить условия опыта: а именно, к насыщенному раствору хлористого кальция, нагретому до 60—80°С, прибавляют 15—20% обыкновенной соляной кислоты в 21°Бомэ.
Насыщенный раствор хлористого кальция, как вещество гигроскопическое, быстро отнимает воду от соляной кислоты; НCl в этом растворе находится как бы в газообразном состоянии и действительно частью выделяется из раствора. При опускания в этот последний какой-нибудь хлопчатобумажной ткани она как бы тает и почти моментально распадается в мельчайший порошок. Не одни крепкие кислоты переводят клетчатку в гидроцеллюлозы; аналогично им действуют и слабые, но медленнее и при нагревании. Хлопок, пропитанный 1% раствором серной кислоты, азотной, соляной или какой-нибудь другой, и нагретый в течение нескольких часов до 60—70°, сполна превращается в гидроцеллюлозу; даже и более слабые растворы оказывают заметное влияние. Органические кислоты относятся в этом случае аналогично минеральным, но далеко не все одинаково энергично. Наиболее сильное действие оказывает щавелевая, наименьшее — уксусная, отчего она по преимуществу и употребляется при варке красок. Сравнительно менее энергично относятся сильные органические спиртокислоты, винно-каменная и лимонная, которые поэтому и расходуются в ситцепечатном деле в большом количестве.
При образовании гидрата целлюлозы происходит ослабление межмолекулярных связей, а следовательно и изменение свойств природной целлюлозы. Гидрат целлюлозы, в отличие от природной целлюлозы, обладает более высокой гигроскопичностью, накрашиваемостью, растворимостью и реакционной способностью. Перевод целлюлозы в гидрат целлюлозы — одна из стадий получения вискозных волокон и полинозных волокон.
При получении вискозных и полинозных волокон щелочную целлюлозу выдерживают определенное время при установленной температуре (предварительное созревание). По окончании созревания ее обрабатывают сероуглеродом, в результате чего образуется соединение сероуглерода и целлюлозы (простой эфир), называемое ксантогенатом. Растворяя это соединение в разбавленном растворе едкого натра, получают вязкий раствор—вискозу, которую фильтруют и затем выдерживают в течение 20—40 часов. Если необходимо получить неблестящее (матированное) целлюлозное волокно то в вязкий раствор добавляют тонко измельченный белый порошок двуокиси титана, а для получения окрашенного волокна в вязкую массу вводят краситель, не изменяющий свойств и цвета при дальнейшей обработке.
По химическому составу вискозное волокно представляет собой чистую целлюлозу — (С6Н10О5)п, где n степень полимеризации. Свежесформированные нити подвергаются вытяжке и тепловой обработке в горячей воде или паром.
Очищенная природная целлюлоза обрабатывается избытком концентрированного гидроксида натрия; после удаления избытка ее комки растирают и полученную массу выдерживают в тщательно контролируемых условиях. При таком «старении» уменьшается длина полимерных цепей, что способствует последующему растворению. Затем измельченную целлюлозу смешивают с дисульфидом углерода и образовавшийся ксантогенат растворяют в растворе едкого натра для получения «вискозы» – вязкого раствора. Когда вискоза попадает в водный раствор кислоты, из нее регенерируется целлюлоза. Упрощенные суммарные реакции таковы:
При вытяжке волокна происходит упорядочение расположения макромолекул целлюлозы относительно оси волокна, что приводит к повышению его механических свойств. В зависимости от степени вытяжки и тепловой обработки можно получить вискозное волокно с разными механическими свойствами: обыкновенное, прочное и высокопрочное.
Полученную после формования вискозную нить отмывают от кислоты и солей и затем подвергают отделочным операциям: удалению серы, отбелке (в результате которой разрушаются пигменты, окрашивающие волокно), а также замасливанию и мыловке для придания мягкости. После окончания отделки нити высушивают, перематывают на бобину, сортируют и отправляют на текстильные фабрики.
В настоящее время все стадии получения волокна (формование, отбелка, сушка, крутка) могут осуществляться на одной машине, что значительно повышает производительность труда. Полученное волокно имеет в поперечнике не строго круглую, а неправильную (извитую) форму, а в продольном направлении—долевые бороздки.
В отличие от нитей непрерывной длины можно получить и короткое волокно, называемое штапельным. При изготовлении штапельного вискозного волокна из одной фильеры выпускается одновременно от 1200 до 3600 элементарных нитей в виде жгута. Полученный сложением из нескольких десятков фильер жгут элементарных нитей подвергается обработке для освобождения от примесей сероуглерода, серы и др., а также вытяжке и промывке в кипящей воде.
Вытяжка волокна достигает 70%, что увеличивает его прочность и тонину. Затем жгут разрезают на короткие отрезки—штапельки (длиной 30— 120 мм). Полученные таким образом штапельные волокна могут перерабатываться на прядильном оборудовании, как в чистом виде, так и в смесках с другими волокнами (шерстью, хлопком, льном, лавсаном и др.)
Вискозное штапельное волокно, применяемое в настоящее время, из-за неоднородности структуры недостаточно механически прочно, поэтому создание вискозного волокна более однородной структуры является одной из проблем современной химии. В настоящее время начата выработка полинозных волокон, представляющих собой разновидность вискозных волокон. Для их производства используют ксантогенат с высокой степенью этерификации. Свежесформированное волокно подвергают значительной вытяжке, благодаря чему оно приобретает более однородную и плотную структуру с высокой прочностью на разрыв. Такое волокно в отличие от вискозного в мокром состоянии отличается более высокими показателями прочности. Пряжа, полученная из полинозных волокон по качеству и внешнему виду почти не отличается от пряжи из лучших сортов хлопка.
... большое число неорганических и элементоорганических полимеров. Соединения большого числа малых молекул в результате химических реакций в длинную цепную молекулу полимера приводит к возникновению у последнего целого комплекса новых физико-механических свойств - упругости, эластичности, способности к пленко- и волокнообразованию. Степень кристалличности, температура размягчения и плавления, ...
... большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы ...
... мира, которая реально воздействует на формирование мировоззренческой компоненты их развития как личностей. Вашему вниманию представляется урок на тему: «Полимеры», наполненный экологическим содержанием, позволяющий оценить важную роль перспективы развития экологического самосознания школьников, выявить взаимосвязь между изучаемым объектом и окружающей средой, а также определить роль уроков химии ...
... . В следствии общности и широты своих законов, физика всегда оказывала воздействие на развитие философии и сама находилась под ее влиянием. Открывая новые достижения, физика не оставляла философские вопросы: о материи, о движении, об объективности явлений, о пространстве и времени, о причинности и необходимости в природе. Развитие атомистики привело Э.Резерфорда к открытию атомного ядра и к ...
0 комментариев